K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2019

\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)

\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)

\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)

\(=cosC.sinC+sinC.cosA.cosB\)

\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)

\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)

\(=sinA.sinB.sinC\)

8 tháng 2 2022

A

9 tháng 8 2019

1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)

=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)

2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)

\(=-cos\left(\pi-A\right)=cosA\)

9 tháng 8 2019

4) bạn ơi +2 vào vế phải mới đúng nhé

2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)

\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)

=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)

\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)

= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3

= sin2A + sin2B + sin2C

23 tháng 3 2022

tau chịu

NV
19 tháng 5 2019

Câu 1:

\(a.sin\left(B-C\right)=a.sinBcosC-a.cosB.sinC\)

\(bsin\left(C-A\right)=bsinC.cosA-bcosC.sinA\)

\(csin\left(A-B\right)=csinAcosB-csinB.cosA\)

Cộng lại:

\(VT=cosA\left(bsinC-c.sinB\right)+cosB\left(c.sinA-a.sinC\right)+cosC\left(a.sinB-bsinA\right)\)

\(=cosA\left(\frac{b.c}{2R}-\frac{bc}{2R}\right)+cosB\left(\frac{ac}{2R}-\frac{ac}{2R}\right)+cosC\left(\frac{ab}{2R}-\frac{ab}{2R}\right)=0\)

Câu 2:

\(sin^2A+sin^2B+sin^2C=\frac{1}{2}-\frac{1}{2}cos2A+\frac{1}{2}-\frac{1}{2}cos2B+1-cos^2C\)

\(=2-\frac{1}{2}\left(cos2A+cos2B\right)-cosC.cosC\)

\(=2-cos\left(A+B\right)cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC.cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=2+2cosA.cosB.cosC\)

NV
19 tháng 5 2019

Câu 3:

Ta có \(sin^2\frac{A}{2}=\frac{1-cosA}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-b^2-c^2+2bc}{4bc}=\frac{a^2-\left(b-c\right)^2}{4bc}\)

\(=\frac{\left(a+b-c\right)\left(a+c-b\right)}{4bc}=\frac{\left(p-c\right)\left(p-b\right)}{bc}\Rightarrow sin\frac{A}{2}=\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{bc}}\)

Tương tự ta có \(sin\frac{B}{2}=\sqrt{\frac{\left(p-a\right)\left(p-c\right)}{ac}}\) ; \(sin\frac{C}{2}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)}{ab}}\)

\(\Rightarrow4Rsin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=4\left(\frac{abc}{4S}\right)\sqrt{\frac{\left(p-a\right)^2\left(p-b\right)^2\left(p-c\right)^2}{a^2b^2c^2}}\)

\(=\frac{abc.\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S.abc}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=r\)