Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^3\cdot9^5\cdot\left(-2\right)^6}{16^4\cdot\left(-27\right)^2}\)
=\(\dfrac{\left(2^2\right)^3\cdot\left(3^2\right)^5\cdot2^6}{\left(2^4\right)^4\cdot\left(-3^3\right)^2}\)
=\(\dfrac{2^6\cdot3^{10}\cdot2^6}{2^{16}\cdot\left(-3\right)^6}\)
=\(\dfrac{2^{6+6}\cdot3^{10}}{2^{16}\cdot3^6}\)
=\(\dfrac{2^{12}\cdot3^{10}}{2^{16}\cdot3^6}\)
=\(\dfrac{3^4}{2^4}\)
=\(\dfrac{81}{16}\)
1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7
a,\(\dfrac{3}{5}+\dfrac{2}{7}=\dfrac{31}{35}\)
b,\(\dfrac{-4}{3}:\dfrac{2}{15}=\dfrac{-60}{6}=-10\)
c,\(\dfrac{3}{7}.\dfrac{2}{9}+\dfrac{7}{9}.\dfrac{3}{7}=\dfrac{3}{7}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{3}{7}\)
d,\(\left(\dfrac{-2}{3}\right)^3.9^2+\left(\dfrac{-3}{4}\right)^2.32\)
\(=\dfrac{\left(-2\right)^3}{3^3}.3^4+\dfrac{\left(-3\right)^2}{4^2}.2^5\)
\(=\left(-8\right).3+\dfrac{3^2}{4^2}.2^5\)
\(=\left(-24\right)+2.9\)
\(=\left(-24\right)+18\)
\(=-6\)
\(A=\dfrac{\left(-3\right)^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)^{45}\cdot\left(-2\right)^{12}}{5\cdot\left(-3\right)^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)\cdot\left(-2\right)}{5}=\dfrac{6}{5}\)
Bài 1:
a) \(x^2-3=1\)
\(\Rightarrow x^2=1+3=4\)
\(\Rightarrow x=\pm2\)
b)\(2x^3+12=-4\)
\(\Rightarrow2x^3=-4-12=-16\)
\(\Rightarrow x^3=-8\)
\(\Rightarrow x=-2\)
c)\(\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{7}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)
a) \(x^2-3=1\Rightarrow x^2=4\Rightarrow x=\pm2\)
b) \(2x^3+12=-4\Rightarrow2x^3=-16\)
\(\Rightarrow x^3=-\dfrac{16}{2}=-8=-2^3\)
\(\Rightarrow x=-2\)
c) \(\left(2x-3\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d,h,i,k cững tương tự....
a) P=23+14+35−745+59+112+135P=23+14+35−745+59+112+135 =(23+14+112)+(59−745)+35+135=1+45+35+135=2135
a) P=23+14+35−745+59+112+135P=23+14+35−745+59+112+135
P =(23+14+112)+(59−745)+35+135
P =1+45+35+135=2135=(23+14+112)+(59−745)+35+135=1+45+35+135=2135.
b)
Q =(5−34+15)−(6+74−85)−(2−54+165)
Q=(5−6−2)+(−34−74+54)+(15−85−165Q=(5−34+15)−(6+74−85)−(2−54+165))
Q = −(3+54+235)Q=(5−6−2)+(−34−74+54)+(15−85−165)=−(3+54+235) =−(3+114+435
Q =−81720=−(3+114+435)=−81720.
\(\frac{4^3\cdot9^3}{8^2\cdot81^2}=\frac{2^6\cdot3^6}{2^6\cdot3^8}=\frac{1}{3^2}=\frac{1}{9}\)
\(\frac{4^3.9^3}{8^2.81^2}=\frac{\left(2^2\right)^3.\left(3^2\right)^3}{\left(2^3\right)^2.\left(3^4\right)^2}=\frac{2^6.3^6}{2^6.3^8}=\frac{1}{9}\)
Lời giải:
Vì \(x=4; y=8\Rightarrow x^2=16; 2y=16\Rightarrow x^2=2y\Rightarrow x^2-2y=0\).
Do đó:
\(A=(x^2-2y).\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}\)
\(=0.\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}=0\)
\(=\dfrac{\left(2^3\right)^3.\left(3^2\right)^4-2^8.\left(3^4\right)^2}{\left(2^4\right)^2.\left(3^4\right)^2+\left(2^2\right)^4.\left(3^3\right)^3}=\dfrac{2^9.3^8-2^8.3^8}{2^8.3^8+2^8.3^9}=\)
\(=\dfrac{2^8.3^8.\left(2-1\right)}{2^8.3^8.\left(1+3\right)}=\dfrac{1}{4}\)