Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\left[\frac{\left(x+1\right)\left(x+2\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right]:\frac{2\left(1-2x\right)}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\frac{\left(x+1\right)\left(x+2\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{2-8x^2}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{1+2x-3x-1+x^2}{3x}\)
\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b)\(\text{Với }x\ne0,x\ne-1,x\ne\frac{1}{2}\text{ ta có:}\)
\(\text{Để A< 0\Leftrightarrow}\frac{x-1}{3}< 0\Rightarrow x-1< 0\Leftrightarrow x< 1\)
a,\(\dfrac{3x^2+3x}{x^3-x}\) = \(\dfrac{3x\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\) = \(\dfrac{3}{x-1}\)
b, f(2) = \(\dfrac{3}{-2-1}\) = 3 : -3 = -1
c, để A nguyên thì 3 ⋮ (x - 1)
=> (x - 1) ∈ Ư(3) = {3 ; 1 ; -1 ; -3}
x - 1 = 1 => x = 2
x - 1 = 3 => x = 4
x - 1 = -1 => x = 0
x - 1 = -3 => x = -2
=> x ∈ {2 ; -2 ; 4 ; 0}
a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)
a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))
= \(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)
= \(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)
b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)
Thay x = -1 vào B, ta có:
\(\dfrac{-1+1}{-1-1}=0\)
c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên
<=> 2\(⋮x-1\)
<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
C | L | C | C |
KL: x \(\in\left\{-1;2;3\right\}\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)
\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)
\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)
\(=\dfrac{3x}{x-2}\)
b) Để A nguyên thì \(3x⋮x-2\)
\(\Leftrightarrow3x-6+6⋮x-2\)
mà \(3x-6⋮x-2\)
nên \(6⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(6\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
(a):
\(P=\dfrac{3x-12}{3x^2-3x-36}=\dfrac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\\ =\dfrac{3\left(x-4\right)}{3\left(x-4\right)\left(x+3\right)}\\ =\dfrac{1}{x+3}\left(ĐK:x\ne\left\{4;-3\right\}\right)\)
(b):
\(x=\dfrac{1}{2}\left(TMDK\right)=>P=1:\left(\dfrac{1}{2}+3\right)=1:\dfrac{7}{2}=\dfrac{2}{7}\)
(c):
\(P=\dfrac{1}{x+3}\in Z=>1⋮\left(x+3\right)\\ =>x+3\inƯ\left(1\right)=\left\{\pm1\right\}\\ =>x\in\left\{-4;-2\right\}\left(TMDK\right)\)