K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

\(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...+\dfrac{10}{46.56}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{46}-\dfrac{1}{56}\)

\(=1-\dfrac{1}{56}=\dfrac{55}{56}\)

23 tháng 8 2023

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)

24 tháng 8 2023

Thanks

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

13 tháng 8 2017

\(B=5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)

\(B=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}.\dfrac{9}{2}-2.\dfrac{7}{3}\right):\dfrac{7}{4}\)

\(B=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{63}{6}-\dfrac{14}{3}\right):\dfrac{7}{4}\)

\(B=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{63}{6}-\dfrac{28}{6}\right):\dfrac{7}{4}\)

\(B=\dfrac{59}{10}:\dfrac{3}{2}-\dfrac{35}{6}:\dfrac{7}{4}\)

\(B=\dfrac{59}{10}.\dfrac{2}{3}-\dfrac{35}{6}.\dfrac{4}{7}\)

\(B=\dfrac{59}{15}-\dfrac{10}{3}\)

\(B=\dfrac{59}{15}-\dfrac{50}{15}\)

\(B=\dfrac{3}{5}\)

13 tháng 8 2017

B=\(5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)

B=\(\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}.\dfrac{9}{2}-2.\dfrac{7}{3}\right):\dfrac{7}{4}\)

B=\(\dfrac{59}{15}-\left(\dfrac{21}{2}-\dfrac{14}{3}\right):\dfrac{7}{4}=\dfrac{59}{15}-\left(\dfrac{63-28}{6}\right):\dfrac{7}{4}\)

B=\(\dfrac{59}{15}-\dfrac{35}{6}:\dfrac{7}{4}\)

B=\(\dfrac{59}{15}-\dfrac{10}{3}=\dfrac{59-50}{15}\)

B=\(\dfrac{3}{5}\)

28 tháng 4 2022

\(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x=10\)

\(=>1,5.\left(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x\right)=15\)

\(=>\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=15\)

\(=>x\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{31.34}\right)=15\)

\(=>x\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=15\)

\(=>x\left(1-\dfrac{1}{34}\right)=15\)

\(=>\dfrac{33}{34}x=15\)

\(=>x=\dfrac{170}{11}\)

 

 

9 tháng 7 2017

3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)

\(\Leftrightarrow2x-6-3+6x=4+4-4x\)

\(\Leftrightarrow8x-9=8-4x\)

\(\Leftrightarrow8x+4x=8+9\)

\(\Leftrightarrow12x=17\)

\(\Leftrightarrow x=\dfrac{17}{12}\)

Vậy \(x=\dfrac{17}{12}\)

4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)

\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)

\(\Leftrightarrow6x-12-4-4x=12-9x-12\)

\(\Leftrightarrow6x-4-4x=12-9x\)

\(\Leftrightarrow2x-4=12-9x\)

\(\Leftrightarrow2x+9x=12+4\)

\(\Leftrightarrow11x=16\)

\(\Leftrightarrow x=\dfrac{16}{11}\)

Vậy \(x=\dfrac{16}{11}\)

11 tháng 3 2023

\(A=\dfrac{4}{1\cdot2}+\dfrac{4}{2\cdot3}+\dfrac{4}{3\cdot4}+...+\dfrac{4}{2022\cdot2023}\\ A=4\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\\ A=4\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\\ A=4\cdot\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\\ A=4\cdot\dfrac{2022}{2023}\\ A=\dfrac{8088}{2023}\)

 

11 tháng 3 2023

giúp mình nhé! ngày mai mình kiểm tra đề cương r.

 

\(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2021\cdot2022\cdot2023}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{2021\cdot2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2021\cdot2022}-\dfrac{1}{2022\cdot2023}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4090506}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2045252}{4090506}=\dfrac{1022626}{4090506}=\dfrac{511313}{2045253}\)

2 tháng 8 2023

`1/(1.2.3) + 1/(2.3.4) + ... + 1/(2021 . 2022 .2023)`

`=> 2/(1.2.3) + 2/(2.3.4) + ... + 2/(2021 . 2022. 2023)`

`= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(2021.2022) - 1/(2022 . 2023)`

`= 1/2 - 1/4090506`

`=4090506/8181012 - 2/8181012`

`= 4090504/8181012`

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5. Cho...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

30 tháng 4 2017

A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)

Vậy A<\(\dfrac{1}{4}\)

---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---