K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

i)

$I=x^4+4x^3-x^2-14x+6$

$=(x^4+4x^4+4x^2)-5x^2-14x+6$

$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$

$=(x^2+2x-3)^2+(x^2-2x+1)-4$

$=(x-1)^2(x+3)^2+(x-1)^2-4$

$=(x-1)^2[(x+3)^2+1]-4\geq -4$

Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$

k)

$K=x^4+2x^3-10x^2-16x+45$

$=(x^4+2x^3+x^2)-11x^2-16x+45$

$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$

$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$

$=(x^2+x-6)^2+(x-2)^2+5$

$=[(x-2)(x+3)]^2+(x-2)^2+5$

$=(x-2)^2[(x+3)^2+1]+5\geq 5$

Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

g)

$G=x^4+4x^3+10x^2+12x+11$

$=(x^4+4x^3+4x^2)+6x^2+12x+11$

$=(x^2+2x)^2+6(x^2+2x)+11$

Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$

$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$

Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$

h)

$H=x^4-6x^3+x^2+24x+18$

$=(x^4-6x^3+9x^2)-8x^2+24x+18$

$=(x^2-3x)^2-8(x^2-3x)+18$

$=(x^2-3x)^2-8(x^2-3x)+16+2$

$=(x^2-3x-4)^2+2\geq 2$

Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$

22 tháng 7 2020

Giải: 

    4xn (7xn-1 + x - 5) - 2xn-2 (14xn+1 - 10x2

      = 28x2n-1 +4xn + 1  – 20xn  - 28x2n-1 + 20xn

       = 4xn+1

9 tháng 9 2017

a,       x- 9 - x2 - 3x + 10 = 1 - 3x

14 tháng 2 2020

Giải

1) 3xy2 : 5x = \(\frac{3}{5}\)y2

2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2

3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)

4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)

5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1

6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3

= 2x2 + x + 1

6 tháng 11 2018

câu b sai đề r

9 tháng 11 2017

Mn ơi làm hộ mk vs mai mk kiểm tra

25 tháng 10 2020

1. Ta có : 2x4 - 3x3 - 3x2 + 6x - 2

= 2x4 - 2x3 - x3 + x2 - 4x2 + 4x + 2x - 2

= 2x3( x - 1 ) - x2( x - 1 ) - 4x( x - 1 ) + 2( x - 1 )

= ( x - 1 )( 2x3 - x2 - 4x + 2 )

= ( x - 1 )[ x2( 2x - 1 ) - 2( 2x - 1 ) ]

= ( x - 1 )( 2x - 1 )( x2 - 2 )

=> ( 2x4 - 3x3 - 3x2 + 6x - 2 ) : ( x2 - 2 ) = ( x - 1 )( 2x - 1 ) = 2x2 - 3x + 1

2. \(\left(15x^4y^6-12x^3y^4-18x^2y^3\right)\div\left(-6x^2y^2\right)\)

\(=\frac{15x^4y^6}{-6x^2y^2}-\frac{12x^3y^4}{-6x^2y^2}-\frac{18x^2y^3}{-6x^2y^2}\)

\(=-\frac{5}{2}x^2y^4+2xy^2+3y\)