Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi số chiếc nón lá cơ sở đó dự kiến làm trong 1 ngày là x ( chiếc , \(0< x< 300,x\in N\)* )
- Gọi thời gian dự kiến làm xong số nón lá là y ( ngày, \(y>3\) )
- Số chiếc nón dự kiến ban đầu của cơ sở đó là : \(x=\frac{300}{y}\left(I\right)\)
Theo đề bài công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu,vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định nên ta có phương trình : \(x+5=\frac{300}{y-3}\left(II\right)\)
- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x=\frac{300}{y}\\x+5=\frac{300}{y-3}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\frac{300}{y}+5=\frac{300}{y-3}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\frac{300+5y}{y}=\frac{300}{y-3}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\300y+5y^2-900-15y=300y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\5y^2-900-15y=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\left(y-15\right)\left(5y+60\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{y}\\\left[{}\begin{matrix}y=15\left(tm\right)\\y=-12\left(vl\right)\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{300}{15}=20\\y=15\end{matrix}\right.\) ( TM )
Vậy mỗi ngày theo dự kiến cơ sở đó sản xuất được 20 chiếc nón lá .
2] cao của hình trụ là h (cm)
Đk: h > p
Ta có: Sxq = 2πRh
Stp = 2πRh + 2πR^2
Theo bài ra ta có: Stp = 2Sxq
=> 2πRh + 2πR^2 = 2.2πRh
⇔ 2πR^2 = 2πRh
⇒ h = R = 6 cm
Thể tích V = πR^2.h = π.6^2.6 = 216π (cm3)
Vậy . . .
Gọi số khẩu trang công ti dự định may mỗi ngày là \(x\)(khẩu trang , \(x\in N^∗,x>0\))
số khẩu trang công ti thực tế may mỗi ngày là \(x+100\)(khảu trang)
Thời gian công ti dự dịnh hoàn thành công việc là \(\frac{6000}{x}\)(ngày)
Thời gian công ti thực tế hoàn thành công việc là \(\frac{6000}{x+100}\)(ngày)
Vì thời gian thực tế hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:
\(\frac{6000}{x}-\frac{6000}{x+100}=2\)
\(\Leftrightarrow\frac{6000.\left(x+100\right)}{x.\left(x+100\right)}-\frac{6000x}{x.\left(x+100\right)}=\frac{2x.\left(x+100\right)}{x.\left(x+100\right)}\)
\(\Leftrightarrow6000x+600000-6000x=2x^2+200x\)
\(\Leftrightarrow2x^2+200x-600000=0\)
\(\Leftrightarrow x^2+100x-300000=0\)
\(\Leftrightarrow x^2-500x+600x-300000=0\)
\(\Leftrightarrow x.\left(x-500\right)+600.\left(x-500\right)=0\)
\(\Leftrightarrow\left(x-500\right).\left(x+600\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-500=0\\x+600=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}}\)
Vậy số khẩu trang công ti dự định may mỗi ngày là \(500\)khẩu trang
Gọi x là khẩu trang cty may đc mỗi ngày theo dự định \(\left(x\inℕ^∗\right)\)
Sau khi bổ sung thêm công nhân thì mỗi ngày may đc: \(x+100\) ( khẩu trang)
Số ngày để may khẩu trang theo dự định là:\(\frac{6000}{x}\)(ngày)
Số ngày để mày khẩu trang khi bổ sung thêm công nhân là:\(\frac{6000}{x+100}\)(ngày)
Vì hoàn thành sớm hơn 2 ngày so với dự định nên ta có pt:
\(\frac{6000}{x}-\frac{6000}{x+100}=2\)
\(\Rightarrow6000\left(x+100\right)-6000x=2x\left(x+100\right)\)
\(\Rightarrow2x^2+200x-600000=0\)
\(\Rightarrow\orbr{\begin{cases}x=500\left(TM\right)\\x=-600\left(L\right)\end{cases}}\)
Vậy dự đinh mỗi ngày cty mày đc 500 chiếc khẩu trang
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
gọi x là số sản phẩm làm 1 ngày theo dự định
3200/x là số ngày làm 3200 sp theo dự định
5+(3200-5x)/(x+40) là số ngày làm xong sản phẩm thực tê
ta có pt
3200/x-3=(5+(3200-5x)/(x+40))
Đáp án C
Gọi số chiếc nón lá mỗi ngày cơ sở đó làm được là x (chiếc)
Số ngày cơ sở đó dự kiến làm hết 300 chiếc nón lá là: 300/x (ngày)
Sau khi làm tăng thêm 5 chiếc nón lá một ngày thì thời gian cơ sở đó làm hết 300 chiếc nón lá là: (ngày).
Theo đề bài ta có phương trình:
Vậy theo dự kiến, mỗi ngày cơ sở đó làm được 20 chiếc nón lá.