Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(f\left(x\right)⋮4x-1\Rightarrow f\left(\dfrac{1}{4}\right)=0\)
\(f\left(x\right)⋮x+3\Rightarrow f\left(-3\right)=0\)
Ta có hpt:\(\left\{{}\begin{matrix}2\left(\dfrac{1}{4}\right)^2a+\dfrac{1}{4}b-3=0\\2.\left(-3\right)^2a-3b-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=11\end{matrix}\right.\)
bạn ơi chỗ f(1/4)=0 làm sao ra được vậy, mình không hiểu
\(x^2-2x-3=\left(x+1\right)\left(x-3\right)\)nên x = -1 và x = 3 là nghiệm của x2 - 2x - 3.
Để đa thức 4x4 - 11x3 - 2ax2 + 5bx - 6 chia hết cho đa thức x2 - 2x - 3 thì -1 và 3 cũng là nghiệm của 4x4 - 11x3 - 2ax2 + 5bx - 6
Khi đó ta có: \(4.\left(-1\right)^4-11.\left(-1\right)^3-2.\left(-1\right)^2a+5.\left(-1\right)b-6=0\)
và \(4.3^4-11.3^3-2.3^2a+5.3b-6=0\). Suy ra: 2a + 5b = 9 và 18a - 15b = 21. Giải hệ phương trình này ta tìm được
a = 2 và b = 1
Dễ mak , chỉ cần áp dụng định lý Bơ- du , thay x =1/4 và x = -3 vào Đa thức , nó ra 2 phương trình thì bạn giải hệ là xong
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
đáp án là 13
mình lấy 2 nghiệm của 4x-1 và x+3 lần lượt thay vào đa thức 2ax2+bx-3
ta được hệ phương trình giải hệ ta đươc a và b
nhớ k cho mình nha