Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
Thử nhé: Gọi O' là trung điểm của AC.
Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).
Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.
nên O'M là đường trung trực của EF.
Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.
Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM.
Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
b: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
=>DE vuông góc với AF
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
mà BC=BE
nên BEFC là hình thoi
=>EC vuông góc với BF
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
nên EMFN là hình chữ nhật
Suy ra: EF=MN
Ta có: \(\hept{\begin{cases}BE//AD\left(gt\right)\\AB//DE\left(gt\right)\end{cases}\Rightarrow ABED}\)là hình bình hành \(\Rightarrow\widehat{BEF}=\widehat{BAD}\left(t/c\right)\)
Tương tự, AFCB là hình bình hành \(\Rightarrow\widehat{AFE}=\widehat{ABC}\) (góc đối)
Mà \(\widehat{BAD}=\widehat{ABC}\)(tính chất hình thang cân)
\(\Rightarrow\widehat{BEF}=\widehat{AFE}\) Mà AB//FE nên ABEF là hình thang cân.
b, Bạn tự chứng minh được HA=HB,OA=OB,IA=IB
Do đó: H,O,I thẳng hàng (vì cùng nằm trên đường trung trực của đoạn AB) nên \(O\in IH\) (1)
\(\Delta IAB\)cân tại I có IH là đường trung tuyến nên IH đồng thời là đường cao
\(\Rightarrow IH\perp AB\Rightarrow IH\perp CD\) (AB//CD)
Mà \(IK\perp CD\left(gt\right)\Rightarrow I,H,K\)thẳng hàng \(\Rightarrow K\in IH\) (2)
Từ (1) và (2), ta được 4 điểm H,O,I,K thẳng hàng
Chúc bạn học tốt.
a: Xét tứ giác EBFD có
EB//FD
EB=FD
Do đó: EBFD là hình bình hành
Bn tự vẽ hình nha
a, Xét tứ giác HMKA có
góc MHA= 90 độ( mh ⊥ AB-gt)
góc MKA = 90 độ( MK⊥ AC - gt)
góc HAK = 90 độ( tam giác ABC ⊥ A-gt)
-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)
-> HM song song AK; Hk=MA; HA=MK
ta có
HM song song ak(cmt)
M là trung điểm BC(gt)
-> H là trung điểm BA
-> Bh=HA=1/2 BA
mà HA=MK(cmt)
->BH=MK(1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến(gt)
-> AM=MB=MC
mà MA=HK(cmt)
-> HK=BM(2)
Từ (1) và (2)
-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)
Sorry nhe mình ko bít lm câu C
Nếu hai câu trên đúng like cho mình nha >_<