K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 10 2018
a.Do tg ABCD là hình bình hành
=> O là trung điểm của BD và AC
=> OB = OD
=> \(\dfrac{1}{2}OB=\dfrac{1}{2}OD\)
hay OM = ON => O là trung điểm MN
+) Tg AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường ( tại O ) => Tg AMCN là hình bình hành ( DHNB )
b.Tg AMCN là hình bình hành
=> AM // CN hay AE // FC
Tg ABCD là hình bình hành
=> AB // CD hay AF // CE
+) Tg AECF có AF // CE , AE // FC
=> Tg AECF là hình bình hành
mà O là trung điểm đường chéo AC
=> O là trung điểm đường chéo EF
hay E , F đối xứng qua O
c. Tg AECF là hbh
=> AC , EF đồng quy tại O mà AC , BD cũng đồng quy tại O ( gt )
=> AC , EF , BD đồng quy tại O
A B C D O M N E F
a) Ta có:
+) M là trung điểm OD
\(\Rightarrow MD=MO=\frac{1}{2}OD\)
N là trung điểm OB
\(\Rightarrow NB=NO=\frac{1}{2}OB\)
Mà OD=OB ( O là giao điểm 2 đường chéo của hình bình hành ABCD)
Suy ra ON=OM=NB=MD (1)
Ta lại có OA=OC
Tứ giác AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành
b) AMCN là hình bình hành =>NC//AM=> FC//AE mà AF//EC
Vậy suy ra AFCE là hình bình hành
O là trung điểm AC => O là trung điểm EF=> E đối xứng với F qua O
c) AC, BD, EF đều qua O nên đồng quy
d) Xét tam giác DNC có NC//ME
\(\Rightarrow\frac{DE}{EC}=\frac{DM}{MN}\)
Mà DM=OM=ON ( theo 1)
=> \(DM=\frac{1}{2}MN\)
=>\(\frac{DE}{EC}=\frac{DM}{MN}=\frac{1}{2}\Rightarrow DE=\frac{1}{2}EC\)
e) Để hình bình hành AMCN là hình chữ nhật thì MN=AC
Mà \(MN=\frac{1}{2}BD\)nên \(AC=\frac{1}{2}BD\)
Vậy ABCD cần điều kiện là \(AC=\frac{1}{2}BD\)thì AMCN là hình chữ nhật