K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,5^x< 0,125\\ \Leftrightarrow x< -1,292\\ b,\left(\dfrac{1}{3}\right)^{2x+1}\ge3\\ \Leftrightarrow2x+1\le-1\\ \Leftrightarrow2x\le-2\\ \Leftrightarrow x\le-1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

c, Điều kiện: x > 0 

\(log_{0,3}x>0\\ \Leftrightarrow x>1\)

d, Điều kiện: \(x>\dfrac{3}{2}\) 

\(ln\left(x+4\right)>ln\left(2x-3\right)\\ \Rightarrow x+4>2x-3\\ \Leftrightarrow x< 7\)

Vậy \(\dfrac{3}{2}< x< 7\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: x > 1

\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)

e, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)

f, Điều kiện: x > 4

\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)

a: ĐKXĐ: \(4x-3>0\)

=>x>3/4

\(log_5\left(4x-3\right)=2\)

=>\(log_5\left(4x-3\right)=log_525\)

=>4x-3=25

=>4x=28

=>x=7(nhận)

b: ĐKXĐ: \(x\ne0\)

\(log_2x^2=2\)

=>\(log_2x^2=log_24\)

=>\(x^2=4\)

=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-2\left(nhận\right)\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{3}{2}\right\}\)

\(\log_52x+1=\log_5-2x+3\)

=>2x+1=-2x+3

=>4x=2

=>\(x=\dfrac{1}{2}\left(nhận\right)\)

d: ĐKXD: \(x\notin\left\{3\right\}\)

\(ln\left(x^2-6x+7\right)=ln\left(x-3\right)\)

=>\(x^2-6x+7=x-3\)

=>\(x^2-7x+10=0\)

=>(x-2)(x-5)=0

=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)

e: ĐKXĐ: \(x\notin\left\{\dfrac{1}{5};2\right\}\)

\(log\left(5x-1\right)=log\left(4-2x\right)\)

=>5x-1=4-2x

=>7x=5

=>\(x=\dfrac{5}{7}\left(nhận\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)

\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

c, ĐK: \(x>-7\)

\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)

Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)

d, ĐK: \(x>\dfrac{1}{2}\)

\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)

Kết hợp với ĐKXĐ, ta được: \(x\ge8\)

a: ĐKXĐ: \(x\notin\left\{\dfrac{5}{2}\right\}\)

\(\log_32x-5=3\)

=>\(log_3\left(2x-5\right)=log_327\)

=>2x-5=27

=>2x=32

=>x=16(nhận)

b: ĐKXĐ: x<>0

\(\log_4x^2=2\)

=>\(log_4x^2=log_416\)

=>\(x^2=16\)

=>\(\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{5}{2}\right\}\)

\(\log_7\left(3x-1\right)=\log_7\left(2x+5\right)\)

=>3x-1=2x+5

=>x=6(nhận)

d: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{-1+\sqrt{13}}{4};\dfrac{-1-\sqrt{13}}{4}\right\}\)

\(ln\left(4x^2+2x-3\right)=ln\left(3x^2-3\right)\)

=>\(4x^2+2x-3=3x^2-3\)

=>\(x^2+2x=0\)

=>x(x+2)=0

=>\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-2\left(nhận\right)\end{matrix}\right.\)

e: ĐKXĐ: \(x\notin\left\{-\dfrac{3}{2};\dfrac{1}{3}\right\}\)

\(log\left(2x+3\right)=log\left(1-3x\right)\)

=>2x+3=1-3x

=>5x=-2

=>\(x=-\dfrac{2}{5}\left(nhận\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

d, Điều kiện: \(x>-1;x\ne0\)

\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)

e, Điều kiện: \(x>\dfrac{5}{3}\)

\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)

f, Điều kiện: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log\left(x+1\right)=2\\ \Leftrightarrow x+1=10^2\\ \Leftrightarrow x+1=100\\ \Leftrightarrow x=99\left(tm\right)\)

b, ĐK: \(\left\{{}\begin{matrix}x-3>0\\x>0\end{matrix}\right.\Rightarrow x>3\)

\(2log_4x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2x+log_2\left(x-3\right)=2\\ \Leftrightarrow log_2\left(x^2-3x\right)=2\\ \Leftrightarrow x^2-3x=4\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

c, ĐK: \(x>1\)

\(lnx+ln\left(x-1\right)=ln4x\\ \Leftrightarrow ln\left[x\left(x-1\right)\right]-ln4x=0\\ \Leftrightarrow ln\left(\dfrac{x-1}{4}\right)=0\\ \Leftrightarrow\dfrac{x-1}{4}=1\\ \Leftrightarrow x-1=4\\ \Leftrightarrow x=5\left(tm\right)\)

d, ĐK: \(\left\{{}\begin{matrix}x^2-3x+2>0\\2x-4>0\end{matrix}\right.\Rightarrow x>2\)

\(log_3\left(x^2-3x+2\right)=log_3\left(2x-4\right)\\ \Leftrightarrow x^2-3x+2=2x-4\\ \Leftrightarrow x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) 

ĐK: \(\left\{{}\begin{matrix}2x-4>0\\x-1>0\end{matrix}\right.\Leftrightarrow x>1\)

\(\log_5\left(2x-4\right)+\log_{\dfrac{1}{5}}\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(2x-4\right)-\log_5\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(\dfrac{2x-4}{x-1}\right)=\log_51\\ \Leftrightarrow\dfrac{2x-4}{x-1}=1\\ \Leftrightarrow2x-4=x-1\\ \Leftrightarrow x=3\left(tm\right)\)

Vậy x = 3.

b) ĐK: x > 0

\(\log_2x+\log_4x=3\\ \Leftrightarrow\log_2x+\dfrac{1}{2}\log_2x=3\\ \Leftrightarrow\left(1+\dfrac{1}{2}\right)\log_2x=3\\ \Leftrightarrow\dfrac{3}{2}\log_2x=3\\ \Leftrightarrow\log_2x=2\\ \Leftrightarrow x=4\left(tm\right)\)

Vậy x= 4