Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(2x-4>=0\)
=>x>=2
b: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>\(2-x>0\)
=>x<2
c: ĐKXĐ: \(-\dfrac{3}{2-6x}>=0\)
=>\(\dfrac{3}{6x-2}>=0\)
=>\(6x-2>0\)
=>x>1/3
d: ĐKXĐ: \(3x^2+2014>=0\)
=>\(x\in R\)
+ Ta có:
3√3+1=3(√3−1)(√3+1)(√3−1)=3√3−3.1(√3)2−1233+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12
=3√3−33−1=3√3−32=33−33−1=33−32.
+ Ta có:
2√3−1=2(√3+1)(√3−1)(√3+1)=2(√3+1)(√3)2−1223−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12
=2(√3+1)3−1=2(√3+1)2=√3+1=2(3+1)3−1=2(3+1)2=3+1.
+ Ta có:
2+√32−√3=(2+√3).(2+√3)(2−√3)(2+√3)=(2+√3)222−(√3)22+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2
=22+2.2.√3+(√3)24−3=22+2.2.3+(3)24−3=4+4√3+31=(4+3)+4√31=4+43+31=(4+3)+431
=7+4√31=7+4√3=7+431=7+43.
+ Ta có:
b3+√b=b(3−√b)(3+√b)(3−√b)b3+b=b(3−b)(3+b)(3−b)
=b(3−√b)32−(√b)2=b(3−√b)9−b;(b≠9)=b(3−b)32−(b)2=b(3−b)9−b;(b≠9).
+ Ta có:
p2√p−1=p(2√p+1)(2√p−1)(2√p+1)p2p−1=p(2p+1)(2p−1)(2p+1)
=p(2√p+1)(2√p)2−12=p(2√p+1)4p−1=p(2p+1)(2p)2−12=p(2p+1)4p−1=2p√p+p4p−1
Bài 51 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)
\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)
\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)
\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)
\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)
\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)
\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)
Cứ nhân lần lược vào rồi rút gọn sẽ được như trên
\(\frac{3}{3\sqrt{2}+1}=\frac{3\left(3\sqrt{2}-1\right)}{\left(3\sqrt{2}+1\right)\left(3\sqrt{2}-1\right)}=\frac{9\sqrt{2}-3}{\left(18-1\right)}=\frac{9\sqrt{2}-1}{17}\)