Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x+2}{x+3}\)
b/ \(A>0\Rightarrow\frac{x+2}{x+3}>0\)
=> x + 2 > 0
và x + 3 \(\le\) 0 => x > -2 và x \(\le\) -3 (vô lí)
hoặc x + 2 \(\le\) 0
và x + 3 > 0 => -3 < x \(\le\) -2
Vậy đề A có nghĩa thì -3 < x \(\le\) -2
Cái kia tương tự
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) Tính chất tỷ lệ thức cứ nhó và cho vào thôi
\(\frac{x+y}{z}=2\Rightarrow\left(x+y\right)=2z\Rightarrow K=2\)vậy thôi
áp dụng..:
\(\frac{x+y}{z}=\frac{y+z}{x}+\frac{x+z}{y}=\frac{x+y+y+z+z+x}{z+x+y}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=>(x+y)/z=2
mà x+y=kz=>k=2
Với N=0
=> a.b=0
=> \(\hept{\begin{cases}a=0\\\forall b\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\\forall a\end{cases}}\)
Với N>0
=> \(\orbr{\begin{cases}\hept{\begin{cases}a>0\\b>0\end{cases}}\\\hept{\begin{cases}a< 0\\b< 0\end{cases}}\end{cases}}\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)mà b,d > 0 nên bd > 0 => ad < cb
mk mới lp 6
người ta gọi là dấu khi và chỉ khi