Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Ta có: \(\Delta ABO\sim\Delta A'B'O\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\left(1\right)\)
Và \(\Delta OIF\sim\Delta A'B'F\Rightarrow\dfrac{OF}{A'F}=\dfrac{OI}{A'B'}\left(2\right)\)
\(\Rightarrow\dfrac{OF}{OF-OA'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{12}{12-OA'}=\dfrac{6}{OA'}\Rightarrow OA'=4\left(cm\right)\)
Ta có: \(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow A'B'=\dfrac{AB.OA}{OA'}=\dfrac{36.6}{4}=54\left(cm\right)\)
Vật ảnh cao 4cm và cách thấu kính 54cm
A B O F F' A' B'
b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật
c) ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)
\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)
⇔1(3-OA') = 3. OA'
⇔3- 3.OA' = 3.OA'
⇔-3.OA' -3. OA' = -3
⇔-6.OA' = -3
⇔OA' = -9
Thay OA'= -9 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm