Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cường độ dòng điện cùng pha với điện áp -> \(Z_L=Z_C\)
Nếu nối tắt tụ C thì mạch chỉ còn R nối tiếp với L.
\(\tan\varphi=\frac{Z_L}{R}=\tan\frac{\pi}{3}=\sqrt{3}\Rightarrow Z_L=\sqrt{3}.50=50\sqrt{3}\Omega\)
\(\Rightarrow Z_C=50\sqrt{3}\Omega\)
2. Cuộn dây phải có điện trở R
Ta có giản đồ véc tơ
Ud Uc Um 120 120 Ur 45 0
Từ giản đồ ta có: \(U_C=\sqrt{120^2+120^2}=120\sqrt{2}V\)
\(U_R=120\cos45^0=60\sqrt{2}V\)
Cường độ dòng điện: \(I=\frac{U_C}{Z_C}=\frac{120\sqrt{2}}{200}=0,6\sqrt{2}V\)
Công suất: \(P=I^2R=I.U_R=0,6\sqrt{2}.60\sqrt{2}=72W\)
Khi trong mạch xảy ra cộng hưởng thì ω = ${\omega _0} = \dfrac{1}{{\sqrt {LC} }}$.
Đáp án A
Khi U R = max ⇒ ω = 1 L C
Khi U L = max ⇒ Z C = L C − R 2 2 ⇔ 1 ω L C = L C − R 2 2
⇒ ω L = 1 L C − R 2 C 2 2 > 1 L C
Khi U C = max ⇒ Z C = L C − R 2 2 ⇔ ω C L = L C − R 2 2
⇒ ω C = 1 L C − R 2 2 L 2 < 1 L C ⇒ ω R 2 = ω L ω C ω C < ω R < ω L
Vậy khi ω thay đổi từ 0 → ∞ thì U C đạt max trước rồi đến U R rồi đến U L
Theo đồ thị ⇒ (1) là U C , (2) là U R và (3) là U L
trong trường hợp ban đầu
điện áp R cực đại nên tại f1 xảy ra hiện tượng cộng hưởng
\(Z_L=Z_C\)
\(LC=\frac{1}{\omega^2_1}\)
Trong trường hợp sau thì điện áp AM không đổi khi thay đổi R, lúc cố định tần số nghĩa là cảm kháng và dung kháng đều cố định
như vậy thì chỉ có trường hợp duy nhất là Uam bằng với U
Khi đó
\(Z_{LC}=Z_L=Z_C-Z_L\)
\(Z_C=2Z_L\)
\(LC=\frac{1}{2\omega^2_2}\)
Suy ra
\(\omega^2_1=2\omega^2_2\)
\(f_1=\sqrt{2}f_2\)
Gọi r là điện trở cuộn dây. $U_d^2 = U_L^2 + U_r^2 \to U_L^2 + U_r^2 = {13^2}$ (1)
${U^2} = {\left( {{U_R} + {U_r}} \right)^2} + {\left( {{U_L} - {U_C}} \right)^2}$ → ${\left( {13 + {U_r}} \right)^2} + {\left( {{U_L} - 65} \right)^2} = {65^2}$(2)
Từ (1)(2) → ${U_r}$ = 12 V
Hệ số công suất của đoạn mạch là cosφ = $\dfrac{{{U_R} + {U_r}}}{U} = \dfrac{{13 + 12}}{{65}} = \dfrac{5}{{13}}$.
Chính là câu số 2 mình đã trả lời ở đây rùi bạn nhé: Hỏi đáp - Trao đổi kiến thức
Đáp án A
Từ đồ thị, ta thấy rằng Z L M là giá trị của cảm kháng để điện áp hiệu dụng trên cuộn dây cực đại
→ Z L M = R 2 + Z C 2 Z C
Tại N mạch xảy ra cộng hưởng, khi đó điện áp hiệu dụng trên tụ là 40 V → U C = U Z C R ↔ 40 = a Z C a → Z C = 40 Ω
Z L = 17 , 5 Ω và Z L M là hai giá trị của cảm kháng cho cùng công suất tiêu thụ.
→ Z L M + 17 , 5 = 2 Z C → Z L M = 62 , 5 Ω
Thay vào Z C và Z L M vào phương trình đầu tiên, ta tìm được a = 30
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)