K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2020

b/

\(4OA^2+OB^2=100\)

\(\Leftrightarrow4\left(\frac{2k+3}{k}\right)^2+\left(2k+3\right)^2=100\)

\(\Leftrightarrow4k^4+12k^3-75k^2+48k+36=0\)

\(\Leftrightarrow\left(2k-3\right)\left(2k^3+9k^2-24k-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\frac{3}{2}\\2k^3+9k^2-24k-12=0\end{matrix}\right.\)

Rất tiếc là pt đằng sau có nghiệm nhưng ko giải được

c/ 

\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|2k+3\right|.\left|\frac{2k+3}{k}\right|=\frac{1}{2}\left|\frac{4k^2+12k+9}{k}\right|\)

\(S_{OAB}=\frac{1}{2}\left|4k+\frac{9}{k}+12\right|\)

Biểu thức này chỉ tồn tại min chứ ko tồn tại max. Đề bài ko đúng

d/ \(\frac{3k^2}{\left(2k+3\right)^2}+\frac{2}{\left(2k+3\right)^2}=\frac{275}{36}\)

\(\Leftrightarrow36\left(3k^2+2\right)=275\left(2k+3\right)^2\)

\(\Leftrightarrow992k^2+3300k+2403=0\)

\(\Rightarrow\left[{}\begin{matrix}k=-\frac{9}{4}\\k=-\frac{267}{248}\end{matrix}\right.\)

NV
11 tháng 4 2020

Do đường thẳng d cắt cả Ox và Oy nên có hệ số góc và tung độ gốc khác 0

Gọi pt đường thẳng có dạng

\(y=kx+b\Rightarrow2k+b=-3\Rightarrow b=-2k-3\ne0\Rightarrow k\ne-\frac{3}{2}\)

\(\Rightarrow y=kx-2k-3\)

Giao điểm của d với Oy và Ox lần lượt là: \(B\left(0;-2k-3\right)\) ; \(A\left(\frac{2k+3}{k};0\right)\)

\(\Rightarrow OA=\left|\frac{2k+3}{k}\right|\) ; \(OB=\left|2k+3\right|\)

a/ \(OA=\frac{2}{3}OB\Leftrightarrow\left|\frac{2k+3}{k}\right|=\frac{2}{3}\left|2k+3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2k+3}{k}=\frac{2}{3}\left(2k+3\right)\\\frac{2k+3}{k}=-\frac{2}{3}\left(2k+3\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}k=\frac{3}{2}\\k=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow y=\frac{3}{2}x-6\Leftrightarrow3x-2y-12=0\)

NV
11 tháng 4 2020

Do d vuông góc d' nên pt d có dạng: \(x+2y-c=0\)

\(\Rightarrow\) d cắt Ox và Oy lần lượt tại \(A\left(c;0\right)\) ; \(B\left(0;\frac{c}{2}\right)\)

a/ \(\overrightarrow{AB}=\left(-c;\frac{c}{2}\right)\Rightarrow c^2+\left(\frac{c}{2}\right)^2=1\)

\(\Leftrightarrow\frac{5c^2}{4}=1\Rightarrow c=\pm\frac{2\sqrt{5}}{5}\)

\(\Rightarrow d:\left[{}\begin{matrix}x+2y+\frac{2\sqrt{5}}{5}=0\\x+2y-\frac{2\sqrt{5}}{5}=0\end{matrix}\right.\)

b/ \(OA=\left|c\right|;OB=\left|\frac{c}{2}\right|\)

\(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{4}\left|c\right|^2=\frac{1}{4}c^2\)

\(\Leftrightarrow\frac{1}{4}c^2=1\Rightarrow c=\pm2\)

\(\Rightarrow d:\left[{}\begin{matrix}x+2y+2=0\\x+2y-2=0\end{matrix}\right.\)

c/ \(\frac{2}{c^2}+\frac{1}{\left(\frac{c}{2}\right)^2}=1\)

\(\Leftrightarrow\frac{2}{c^2}+\frac{4}{c^2}=1\Leftrightarrow\frac{6}{c^2}=1\Rightarrow c=\pm\sqrt{6}\)

\(\Rightarrow d:\left[{}\begin{matrix}x+2y+\sqrt{6}=0\\x+2y-\sqrt{6}=0\end{matrix}\right.\)

21 tháng 2 2021

 Gọi \(A\left(a;0\right),\left(B;b\right)\left(a,b>0\right)\)

Pt đường thẳng cần tìm có dạng :

\(\dfrac{x}{a}+\dfrac{y}{b}=1\)

Vì đường thẳng qua M(3;2) nên:

\(\dfrac{3}{a}+\dfrac{2}{b}=1\left(1\right)\)

a) \(0A+0B=12\Leftrightarrow a+b=12\Leftrightarrow a=12-b\left(2\right)\)

Thay (2) vào (1) ta có: \(\dfrac{3}{12-b}+\dfrac{2}{b}=1\)

\(\Leftrightarrow3b+2\left(12-b\right)=\left(12-b\right)b\)

\(\Leftrightarrow b^2-11b+24=0\Leftrightarrow b=3hayb=8\)

+ Với b=3=>a=9 => \(\dfrac{x}{9}+\dfrac{y}{3}=1\Leftrightarrow x+3y-9=0\)

+ Với b=8=>a=4 => \(\dfrac{x}{4}+\dfrac{y}{8}=1\Leftrightarrow2x+y-8=0\)

b) \(S_{\Lambda OAB}=\dfrac{1}{2}0A.0B=\dfrac{1}{2}ab=12\Leftrightarrow a=\dfrac{24}{b}\left(3\right)\)

Thay (3) vào (1) ta có: \(\dfrac{3b}{24}+\dfrac{2}{b}=1\Leftrightarrow b^2+16=8b\Leftrightarrow\left(b-4\right)^2=0\Leftrightarrow b=4\)

\(\Rightarrow a=6\Rightarrow\dfrac{x}{6}+\dfrac{y}{4}=1\Leftrightarrow2x+3y-12=0\)

NV
21 tháng 4 2020

Câu 3:

Chắc pt đường tròn là \(\left(x-2\right)^2+\left(y+\frac{3}{2}\right)^2=25\)

Gọi d là đường thẳng qua M. Đường tròn tâm \(I\left(2;-\frac{3}{2}\right)\)

Áp dụng định lý Pitago:

\(d\left(I;d\right)=\sqrt{5^2-\left(\frac{8}{2}\right)^2}=3\)

Phương trình d qua M có dạng:

\(a\left(x+1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+a-3b=0\)

Theo công thức khoảng cách:

\(d\left(I;d\right)=\frac{\left|2a-\frac{3}{2}b+a-3b\right|}{\sqrt{a^2+b^2}}=3\Leftrightarrow\left|2a-3b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow\left(2a-3b\right)^2=4\left(a^2+b^2\right)\Leftrightarrow5b^2-12ab=0\)

\(\Rightarrow\left[{}\begin{matrix}b=0\\5b=12a\end{matrix}\right.\)

Chọn \(b=12\Rightarrow a=5\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+1=0\\5x+12y-31=0\end{matrix}\right.\)

NV
21 tháng 4 2020

Câu 2:

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}x+y-2=0\\-x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{1}{2};\frac{5}{2}\right)\)

Do \(d_1\) có hệ số góc \(-1\Rightarrow d_1\) tạo với chiều âm trục Ox 1 góc 45 độ

\(d_2\) có hệ số góc \(1\Rightarrow d_2\) tạo với chiều dương trục Ox 1 góc \(45^0\)

\(\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}=0\Rightarrow d_1\perp d_2\)

\(\Rightarrow\) 3 giao điểm của \(d_1;d_2;Ox\) tạo thành một tam giác vuông cân tại M

\(\Rightarrow\) hai đường phân giác góc tạo bởi \(d_1\)\(d_2\) lần lượt vuông góc với Ox và Oy

\(\Rightarrow\) Hai đường phân giác góc tạo bởi d1 và d2 lần lượt có pt là \(\left[{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)

- TH1: tâm I của đường tròn nằm trên \(x=-\frac{1}{2}\Rightarrow I\left(-\frac{1}{2};b\right)\)

\(\Rightarrow\overrightarrow{IA}=\left(\frac{3}{2};-b\right)\Rightarrow R^2=IA^2=b^2+\frac{9}{4}\)

Mặt khác theo công thức khoảng cách:

\(d\left(I;d_1\right)=R\Rightarrow\frac{\left|-\frac{1}{2}+b-2\right|}{\sqrt{2}}=R\Rightarrow\frac{\left(b-\frac{5}{2}\right)^2}{2}=R^2\)

\(\Rightarrow b^2+\frac{9}{4}=\frac{\left(b-\frac{5}{2}\right)^2}{2}\Leftrightarrow2b^2+\frac{9}{2}-\left(b-\frac{5}{2}\right)^2=0\)

Nghiệm lại xấu nữa, bạn tự giải tiếp

TH2: tâm I của đường tròn nằm trên \(y=\frac{5}{2}\Rightarrow I\left(a;\frac{5}{2}\right)\) làm tương tự TH1

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0