Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(|-x+8|\ge0\)
=> \(|-x+8|-21\ge-21\)
=> A \(\ge-21\)
Vậy A đạt GTNN là -21 khi x=8
b) ta có :\(|-x-17|+|y-36|\ge0\)
=> \(|-x-17|+|y-36|+12\ge0+12\)
=> B \(\ge12\)
Vậy B đạt GTNN là 12 khi x=-17 và y =36
c) ta có: \(-|2x-8|\le0\)
=> \(-|2x-8|-35\le0-35\)
=> C \(\le-35\)
Vậy C đạt GTLN là -35 khi 2x-8=0==> x=4
d) ta có : \(3.\left(3x-12\right)^2\ge0\)
=> \(3.\left(3x-12\right)^2-35\ge0-35\)
=> \(D\ge-35\)
Vậy D đạt GTNN là -35 khi x =4
e) ta có : \(-3.|2x+50|\le0\)
=>: \(-21-3.|2x+50|\le0-21\)
=> E \(\le-21\)
vậy E đạt GTLN là -21 khi x=-25
Các bn ơi giải hộ mik với. Ai giải đầu mik sẽ k cho. Cảm ơn các bn nhiều nha.
a)Ta có: \(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
b) Ta có: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(20< 21\Rightarrow5^{20}< 5^{21}\)
\(\Rightarrow625^5< 125^7\)
c) Ta có: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\)( do \(n>0\))
\(\Rightarrow3^{2n}>2^{3n}\)
d)Ta có: \(5^{23}=5.5^{22}< 6.5^{22}\)
\(\Rightarrow5^{23}< 6.5^{22}\)
a. 5^36=(5^3)^12
=125^12
11^24=(11^2)^12
= 121^12
Vì 125^12>121^12 nên 5^36>11^24
b. Ta có: 625^5 =(5^4)^5
= 5^20
125^7=(5^3)^7
= 5^21
Vì 5^20<5^21 nên 625^5<125^7
530 = 5 . 529
5 . 529 < 6 . 529 ( vì 5 < 6 )
vậy 530 < 6 . 529
Ta có: \(5^{30}=5\cdot5^{29}\)
\(6\cdot5^{29}\)
Vì \(5< 6\Rightarrow5\cdot5^{29}< 6\cdot5^{29}\)
hay \(5^{30}< 6\cdot5^{29}\)
Vậy \(5^{30}< 6\cdot5^{29}\).
(-7)2+(-49).[ -15+(-7)4:73 ]+(-1)2014
=49+(-49).[-15+ 7]+1
=49+(-49).(-8)+1
=49+392+1
=441+1
=442