\(\frac{1}{x+5}+\frac{2}{2-5x}\ge0\)

e \(\frac{1}{x-2}\le\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

d.

\(\Leftrightarrow\frac{2-5x+2\left(x+5\right)}{\left(x+5\right)\left(2-5x\right)}\ge0\)

\(\Leftrightarrow\frac{3\left(4-x\right)}{\left(x+5\right)\left(2-5x\right)}\ge0\Rightarrow\left[{}\begin{matrix}-5< x< \frac{2}{5}\\x\ge4\end{matrix}\right.\)

e.

\(\Leftrightarrow\frac{1}{x+2}+\frac{1}{x-1}-\frac{1}{x-2}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)+\left(x+2\right)\left(x-2\right)-\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)\left(x-2\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(x-4\right)}{\left(x+2\right)\left(x-1\right)\left(x-2\right)}\ge0\Rightarrow\left[{}\begin{matrix}-2< x\le0\\1< x< 2\\x\ge4\end{matrix}\right.\)

f.

\(\Leftrightarrow\frac{x-2}{x-3}-\frac{x-1}{x+1}>0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+1\right)-\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}>0\Leftrightarrow\frac{3x-5}{\left(x+1\right)\left(x-3\right)}>0\) \(\Rightarrow\left[{}\begin{matrix}-1< x\le\frac{5}{3}\\x>3\end{matrix}\right.\)

19 tháng 3 2020

Giúp mình hoàn thành các bài tập này với ạ.Cảm ơn rất nhìuuuuuuu @@@

19 tháng 3 2020

@Akai Haruma

9 tháng 11 2016

a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)

b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)

c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)

d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)

e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)

f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)

g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)

25 tháng 3 2020
https://i.imgur.com/RNvPnWr.jpg
25 tháng 3 2020
https://i.imgur.com/puIQxgp.jpg
11 tháng 1 2020
https://i.imgur.com/NIunWu5.jpg
4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

NV
23 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)