Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 5x=2y⇒2x=5y5x=2y⇒2x=5y(1)
3y=5z⇒5y=3z3y=5z⇒5y=3z (2)
Từ (1) và (2) ,đặt: 2x=5y=3z=k⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=32882x=5y=3z=k⇒{x=2k=2288y=5k=5288z=3k=3288 (3)
Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:
2x=5y=3z=2−5+3x−y+z=02882x=5y=3z=2−5+3x−y+z=0288(4)
Suy ra k = 288. Dựa và (3) ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=3288{x=2k=2288y=5k=5288z=3k=3288
Vậy .....
Vì 5x = 2y nên x/2 = y/5 (1)
Vì 3y = 5z nên y/5 = z/3 (2)
Từ (1) và (2) ta suy ra x/2 = y/5 =z/3. áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/3 = x + y +z / 2 +5 +3 =720/10 =72
suy ra x/2=72 hay x=72.2=144;
y/5=72 hay y=72.5=360;
z/3=72 hay z=72.3=216
Vậy x=144;y=360;z=216
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)
\(3x=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{3}=\frac{3x+2y-z}{6+10-3}=\frac{26}{13}=2\)
\(\Rightarrow x=4;y=10;z=6\)
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=4k\)
\(z=5k\)
\(\Rightarrow M=\frac{5x-2y+4z}{x+3y-5z}\)
\(=\frac{5\cdot2k-2\cdot4k+4\cdot5k}{2k+3\cdot4k-5\cdot5k}\)
\(=\frac{10k-8k+20k}{2k+12k-25k}\)
\(=\frac{2k\left(5-4+10\right)}{k\left(2+12-25\right)}\)
\(=\frac{2k\cdot11}{k\cdot\left(-11\right)}\)
\(=-2\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y+z}{2+5+3}=\dfrac{720}{10}=72\)
Do đó: x=144; y=360; z=216