K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\left\{{}\begin{matrix}D=5x^{10}-y^{15}+2007\\\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\forall x\\\left(y-1\right)^{2008}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^{2006}+\left(x-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(x-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Thay vào biểu thức ta có:

\(D=5.\left(-1\right)^{10}-1^{15}+2007\)

\(D=5-1+2007\)

\(D=2011\)

1 tháng 6 2017

\(\left(x+1\right)^{2006}\ge0;\left(y-1\right)^{2008}\ge0\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi (x+1)2006=0;(y-1)2008=0 <=>x+1=0;y-1=0<=>x=-1;y=1

bạn thay vào A mà tính

24 tháng 9 2023

2023 =))

9 tháng 10 2016

\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)

\(\Leftrightarrow\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}\)

9 tháng 10 2016

 

Vì \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)

 \(< =>x+\frac{2006}{2007}=0;\frac{2008}{2009}-y=0\) 

Nếu trườn hợp cn lại là 2 số đối nhau ( một số âm và 1 số dương ), vì cả 2 số đều có giá trị tuyệt đối nên 2 số phải lớn hơn hoặc bằng 0

\(x+\frac{2006}{2007}=0\)                          \(\frac{2008}{2009}-y=0\)

\(x=-\frac{2006}{2007}\)                              \(y=\frac{2008}{2009}\)

Vậy x = \(-\frac{2006}{2007};y=\frac{2008}{2009}\)

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0

vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007

suy ra 2008/2009 - y = 0 ; y = 2008/2009

4 tháng 9 2016

Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)

Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)

=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)

17 tháng 3 2017

\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

<=>\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)

<=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)

<=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)

<=>\(\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)

\(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\) nên x-2010=0 <=>x=2010

17 tháng 3 2017

2010 sai chịu j cx chịu

21 tháng 8 2017

\(A=\dfrac{10^{2006}+1}{10^{2007}+1}\)

\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)

\(B=\dfrac{10^{2007}+1}{10^{2008}+1}\)

\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)

Từ (1)và (2)=>A>B

Chúc Bạn học tốt ,có nhiều thành công trong học tập

19 tháng 9 2018

Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0

mà ... ( ghi đề bài ra )

\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)

Vậy,.......