Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn muốn nhờ mọi người giải chi tiết nhưng lại viết đề không chi tiết. Bạn xem lại đề.
a) \(x\left(x-y\right)+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
b) \(2x+2y-x\left(x+y\right)\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) \(5x^2-5xy-10x+10y\)
\(=5x\left(x-y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-10\right)\)
d) \(4x^2+8xy-3x-6y\)
\(=4x\left(x+2y\right)-3\left(x+2y\right)\)
\(=\left(x+2y\right)\left(4x-3\right)\)
e) \(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2+2y^2-2\right)-\left(x^2z-z+y^2z\right)\)
\(=2\left(x^2+y^2-1\right)-z\left(x^2-1+y^2\right)\)
\(=\left(x^2+y^2-1\right)\left(2-z\right)\)
a) \(a^2x+a^2y-9x-9y\)
\(=\left(a^2x+a^2y\right)-\left(9x+9y\right)\)
\(=a^2\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(a^2-9\right)\)
\(=\left(x+y\right)\left(a-3\right)\left(a+3\right)\)
b) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
c) \(x^2\left(x-3\right)+12-4x\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
d) \(4x\left(x-y\right)+6y\left(x-y\right)\)
\(=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
e) \(5\left(x+y\right)-xy-y^2\)
\(=5\left(x+y\right)-\left(xy+y^2\right)\)
\(=5\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(5-y\right)\)
a, 20x - 5y = 5(4x - y)
b, 4x2 - 8xy2 + 10x2y = 2x(2x - 4y2 + 5xy)
c, 5x (x - 1) - 3x (x - 1) = (5x - 3x) (x - 1) = 2x (x - 1)
d, x (x + y) - 6x - 6y = x (x + y) - (6x + 6y) = x (x + y) - 6 (x + y) = (x - 6) (x + y)
e, x4 - y4 = (x2)2 - (y2)2 = (x2 - y2) (x2 + y2) = [(x + y) (x - y)] (x2 + y2)
f, x2 - 4y2 = x2 - (2y)2 = (x - 2y) (x + 2y)
g, 27x3 - 64 = (3x)3 - 43 = (3x - 4) (9x2 + 12x + 16)
h, (x +1)2 - 16 = (x +1)2 - 42 = (x + 1 + 4) (x + 1 - 4) = (x + 5) (x - 3)
i, (3x + 1)2 - (x - 2)2 = (3x + 1 - x + 2) (3x + 1 + x - 2) = (2x + 3) ( 4x - 1)
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
a)
\(12xy-4x^2y+8xy^2\\ =4xy\cdot\left(3-x+2y\right)\)
b)
\(4x\cdot\left(x-2y\right)-8y\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)^2\)
c)
\(25x^2\cdot\left(y-1\right)-5x^3\cdot\left(1-y\right)\\ =-25x^2\cdot\left(1-y\right)-5x^3\cdot\left(1-y\right)\\ =\left(1-y\right)\cdot\left(-25x^2-5x^3\right)\\ =5x^2\left(1-y\right)\cdot\left(-5-x\right)\)
d)
\(3x\cdot\left(a-x\right)+4a\cdot\left(a-x\right)\\ =\left(a-x\right)\cdot\left(3x+4a\right)\)
e)
\(x^3-3x^2+2\\ =x^3-x^2-2x^2+2\\ =x^2\cdot\left(x-1\right)-2\left(x^2-1\right)\\ =x^2\cdot\left(x-1\right)-2\cdot\left(x-1\right)\cdot\left(x+1\right)\\ =\left(x-1\right)\left[x^2-2\cdot\left(x+1\right)\right]\\ =\left(x-1\right)\cdot-\left(x^2+2x+1\right)\\ =\left(x-1\right)\cdot-\left(x+1\right)^2\)
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
f: \(\left(y-1\right)^2\)
e: =(x+y+5)(x+y-5)
\(d,15x^2y+20xy^2+25xy=5xy\left(3x+4y+5\right)\\ e,\left(x+y\right)^2-25=\left(x+y\right)^2-5^2=\left(x+y-5\right)\left(x+y+5\right)\\ f,1-2y+y^2=\left(1-y\right)^2\\ h,4x^2+8xy-3x-6y=\left(4x^2+8xy\right)-\left(3x+6y\right)=4x\left(x+2y\right)-3\left(x+2y\right)=\left(x+2y\right)\left(4x-3\right)\)