K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

ta co

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}>\frac{1}{2.2}+\frac{1}{3.3}+....+\frac{1}{10.10}\)

ma ve trai =\(1-\frac{1}{10}\)

nen ve phai <1

2 tháng 3 2017

D=1/1.2+1/2.3+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10

=1+0+0+0+...+0-1/10=1-1/10=9/10

ta có ; 1/2+1/32+...+1/20172<1/1.2+1/2.3+1/3.4+.....+1/2016.2017=1-1/2+1/2-1/3+...+1/2016-1/2017=1+0+0+0+...+0-1/2017

=1-1/2017<1

14 tháng 7 2015

Cho A = 1/32 + 1/33 + 1/34 + ... + 1/39

=>3A=1/3+1/32+1/33+...+1/38

=>3A-A=1/3+1/32+1/33+...+1/38-1/32-1/33-1/34-...-1/39

=>2A=1/3-1/39

=>\(A=\frac{\frac{1}{3}-\frac{1}{3^9}}{2}\)<1

Vậy A<1

15 tháng 6 2017

Ta có : 2+ 2x + 1 = 24

=> 2x(1 + 2) = 24

=> 2x.3 = 24

=> 2x = 8

=> 2x = 23 

=> x = 3

15 tháng 6 2017

Ta có : (x + 2)4 = (x + 2)6

=> (x + 2)- (x + 2)= 0

<=>  (x + 2)(1 - (x + 2)2) = 0

<=> \(\orbr{\begin{cases}\left(x+2\right)^4=0\\\left(1-\left(x+2\right)^2\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x+2=0\\\left(x+2\right)^2=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x+2=0\\x+2=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

 

2 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}<2\)

2 tháng 5 2016

Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)     (1)

Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=1+\left(1-\frac{1}{50}\right)=1+\frac{49}{50}\)

Mà 1+49/50 < 2   (2)

Từ (1) và (2) ta có: A<1+49/50<2

Vậy A<2

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{2^2-1}+\frac{1}{3^2-1}+...+\frac{1}{50^2-1}\)

\(=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{49.51}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{50}+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{50}-\frac{1}{51}\right)< \frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{3}{4}\left(dpcm\right)\)

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)