Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) C = 5 + 52 + 53 + 54 + ... + 520
= (5 + 52) + (53 + 54) + ... +(519 + 520)
= (5 + 52) + 52(5 + 52) + .... + 518(5 + 52)
= (5 + 52)(1 + 52 + ... + 518)
= 26(1 + 52 + ... + 518)
= 13.2.(1 + 52 + ... + 518) \(⋮\)13 (ĐPCM)
2) a) A = 24 + 25 + 26 + 27 + 28 + 29
= (24 + 25) + (26 + 27) + (28 + 29)
= 24(1 + 2) + 26(1 + 2) + 28(1 + 2)
= (1 + 2)(24 + 26 + 28)
= 3(24 + 26 + 28) \(⋮3\)
b) B = 317 + 318 + 319 + 320 + 321 + 322
= (317 + 318 + 319) + (320) + 321 + 322)
= 317(1 + 3 + 32) + 320(1 + 3 + 32)
= (1 + 3 + 32)(317 + 320)
= 13(317 + 320) \(⋮\)13
Bài 1:
C = 5+52 +53+.....+520
=(5+52+53+54)+.....+(517+518+519+520)
=5.(1+5+52+53)+.....+517(1+5+52+53)
=5.156+....+517.156
=156.(5+...+517)=13.12.(5+....+517) chia hết cho 13
Bài 2:
A=24+25+26+27+28+29
=(24+25)+(26+27)+(28+29)
=24(1+2)+26(1+2)+28(1+2)
=24.3+26.3+28.3
=3.(24+26+28) chia hết cho 3
b)
B=317+318+319+320+321+322
=(317+318+319)+(320+321+322)
=317(1+3+32)+320(1+3+32)
=317.13+320.13
=13.(317+320)chia hết cho 13
#CừU
a.
\(1500-\left\{5^3.2^3-11\left[7^2-5.2^3+8\cdot\left(11^2-121\right)\right]\right\}\)
\(=1500-\left\{\left(5.2\right)^3-11\left[9+8\left(11^2-11^2\right)\right]\right\}\)
\(=1500-\left\{10^3-11.9\right\}\)
\(=1500-901=599\)
b/
\(S=5+5^2+5^3+...+5^{2012}\)
\(5S=5^2+5^3+5^4+...+5^{2013}\)
\(4S=5S-S=5^{2013}-5\)
\(S=\frac{5^{2013}-5}{4}\)
a ; 1500 - { 5 ^ 3 . 2 ^ 3 - 11 [ 7 ^ 2 - 5 . 2 ^ 3 + 8 ( 11 ^ 2 - 121) ] }
a ; 1500 - { 5 ^ 3 . 2 ^ 3 - 11 [ 7 ^ 2 - 5 . 2 ^ 3 + 8 ( 121 - 121) ] }
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 7 ^ 2 - 5 . 2 ^ 3 + 8 . 0 ) ]
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 49 - 5 .8 + 8 . 0) ]
a ; 1500 - [ 5 ^ 3 . 2 ^ 3 - 11 ( 49 - 40 + 0 ) ]
a ; 1500 - ( 5 ^ 3 . 2 ^ 3 - 11 . 9 )
a ; 1500 - [ ( 5 . 2 ) ^ 3 - 99]
a ; 1500 - ( 10 ^ 3 - 99)
a ; 1500 - ( 1000 - 99)
a ; 1500 - 901
a = 599
\(a.S=2+2^2+2^3+...+2^{20}\\2S=2^2+2^3+...+2^{21}\\ 2S-S=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+2^3+...+2^{20}\right)\\ S=2^{21}-2\\ b,A=5+5^2+5^3+...+5^{96}\\ 5A=5^2+5^3+5^4+.......+5^{97}\\ 5A-A=\left(5^2+5^3+...+5^{97}\right)-\left(5+5^2+5^3+...+5^{96}\right)\\ 4A=5^{97}-5\\ A=\dfrac{5^{97}-5}{4}\)
\(S=2+2^2+2^3+...+2^{20}\)
\(\Rightarrow S=2\left(1+2^1+2^2+...+2^{19}\right)\)
\(\Rightarrow S=2.\dfrac{2^{19+1}-1}{2-1}=2\left(2^{20}-1\right)\)
\(B=5+5^2+5^3+...+5^{96}\)
\(\Rightarrow B=5\left(1+5^1+5^2+...+5^{95}\right)\)
\(\Rightarrow B=5.\dfrac{5^{95+1}-1}{5-1}=\dfrac{5\left(5^{96}-1\right)}{4}\)