Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt d = UCLN (12n+1,30n+2)
=>12n+1 chia hết cho d (kí hiệu)và 30n+2 chia hết cho d(kí hiệu)
hay 5(12n+1) chia hết cho d(kí hiệu) và 2(30n+2) chia hết cho d (kí hiệu)
=>5(12n+1)-2(30n+2) chia hết cho d(kí hiệu)
=>60n + 5 -(60n + 4)chia hết cho d(kí hiệu)
=>60n+5-60n-4 chia hết cho d(kí hiệu)
=>60n-60n+5-4 chia hết cho d(kí hiệu)
=>1 chia hết cho d(kí hiệu)
=> d=1
Vậy 12n+1/30n+2 là p/s tối giản
Đặt d = UCLN (12n+1,30n+2)
=>12n+1 chia hết cho d (kí hiệu)và 30n+2 chia hết cho d(kí hiệu)
hay 5(12n+1) chia hết cho d(kí hiệu) và 2(30n+2) chia hết cho d (kí hiệu)
=>5(12n+1)-2(30n+2) chia hết cho d(kí hiệu)
=>60n + 5 -(60n + 4)chia hết cho d(kí hiệu)
=>60n+5-60n-4 chia hết cho d(kí hiệu)
=>60n-60n+5-4 chia hết cho d(kí hiệu)
=>1 chia hết cho d(kí hiệu)
b) Gọi ƯCLN( 14n+17;21n+25)=d (d thuộc N*)
Ta có : 14n+17 chia hết cho d và 21n+25 chia hết cho d
Suy ra 3(14n+17) chia hết cho d và 2(21n+25 ) chia hết cho d
Suy ra 42n+51 chia hết cho d và 42n +50 chia hết cho d
Suy ra (42n+51)- 42n- 50 chia hết cho d
d=1
14n+17 và 21n+25 là 2 số nguyên tố cùng nhau
Vậy \(\frac{14n+17}{21n+25}\)là phân số tối giản
K mình nha
a)Gọi ƯCLN(12n+1;30n+2)=d (d thuộc N*)
Ta có :12n+1chia hết cho d; 30n+2 chia hết cho d
Suy ra 5(12n+1) chia hết cho n
2(30n+2) chia hết cho n
Suy ra 60n+5 chia hết cho n và 60n+4 chia hết cho n
Suy ra (60n+5)-(60n+4) chia hết cho d
1 chia hết cho d
d=1
12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Vậy \(\frac{12n+1}{30n+2}\)là phhân số tối giản (đpcm)
Ta có : \(\frac{12n+1}{30n+2}\)tối giản <=> ƯCLN(12n+1; 30n+2) \(\in\){1; -1}
Gọi d là ƯCLN(12n + 1; 30n+ 2)
=> 12n + 1 \(⋮\)d => 5.(12n + 1) \(⋮\)d => 60n + 5 \(⋮\)d
30n + 2 \(⋮\)d 2(30n + 2) \(⋮\)d 60n + 4 \(⋮\)d
=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc ƯC (12n+1, 30n+2).
Ta có:
12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 12n+1 - 30n+2 chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n+5 - 60n+4 chia hết cho d
=> (60n - 60n) + (5-4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc d = -1
Vậy phân số trên là phân số tối giản.
12n+1/30n+2 tối giản <=> ƯCLN(12n+1,30n+2)=1
Đặt ƯCLN(12n+1,30n+2)=d (d thuộc N*)
Ta có:12n+1 chia hết cho d =>5(12n+1) chia hết chod=>60n+5 chia hết cho d
30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d
=>60n+5-(60n+4) chia hết cho d
<=> 60n+5-60n-4 chia hết cho d
=>1 chia hết cho d. d thuộc N* =>d =1
=>ƯCLN(12N+1,30N+2)=1
Vậy Phân số 12n+1/30n+2 là tối giản
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n-4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
\(\Rightarrow\frac{12n+1}{30n+2}\)là phân số tối giản
Vậy ...
\(\frac{12n+1}{30n+2}\)là phân số tối giản khi UCLN(12n+1,30n+2)=1
Vậy ta cần phải chứng minh UCLN(12n+1,30n+2)=1.
Đặt d là UCLN(12n+1,30n+2)
=> 12n+1\(⋮\)d và 30n+2\(⋮\)d.
=>5(12n+1)\(⋮\)d và 2(30n+2)\(⋮\)d
=>60n+5\(⋮\)d và 60n+4\(⋮\)d.
=>60n+5-60n-4\(⋮\)d
=>1\(⋮\)d
=> d=1
Vậy UCLN(12n+1,30n+2)=1
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản