K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

a/ \(x^2+2x+3=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\ge2>0\forall x\)

Vậy phương trình trên vô nghiệm.

b) \(\left(x-1\right)^2+3x^2=4x^2-2x+1=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy phương trình trên vô nghiệm

4 tháng 5 2017

a/ ta có: 2(x+1)=3+2x

=> 2x +2 = 3+ 2x

=>2x-2x=3-2

=>0=1 (vô lí) =>đpcm

4 tháng 5 2017

b/ 2(1-1,5x)+3x=0 =>2-3x+3x=0

=>0=-2 (vô lí ) =>đpcm

c/ vô nghiệm vì không có giá trị tuyệt đối nào mà kết quả là số âm

18 tháng 4 2018

\(a)\) Ta có : 

\(\left(x-1\right)^2\ge0\)

\(3x^2\ge0\)

\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)

Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy phương trình có nghiệm \(x=0\) và \(x=1\)

Đề sai nhé 

18 tháng 4 2018

\(b)\) Ta có : 

\(x^2+2x+3\)

\(=\)\(\left(x^2+2x+1\right)+2\)

\(=\)\(\left(x+1\right)^2+2\ge2>0\)

Vậy đa thức \(x^2+2x+3\)  vô nghiệm 

Em mới lớp 7 có gì sai anh thông cảm nhé 

a) Ta có: \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\forall x\)

b) Vì \(\left(x-1\right)^2\ge0\forall x\)

\(3x^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+3x^2=0\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)(vô lí)

Do đó phương trình b vô nghiệm

10 tháng 4 2020

\(a, 2x^2 + 5x + 10 = x^2 + 5x - 11\)

\(<=> x^2 + 21 = 0 \)

\(Do x^2 + 21 > 0\)

=> Pt vô nghiệm

\(b, 2x^2 - 6x + 7 = 0\)

\(<=> 2(x^2 - 3x+7/2)=0\)

\(<=> (x-3/2)^2 +7/4 = 0 \)

Tương tự như trên thì pt vô nghiệm

\(c, |x^2 + 3x+20| + |x-3| = 0\)

Ta có : \(|x^2 + 3x+20| = |(x+3/2)^2 + 17,75| > 0\)

 \(=> |x^2 + 3x+20| + |x-3| > 0\)

=> Pt vô nghiệm

28 tháng 3 2020

\(a,x^2-4=0\)

\(\Leftrightarrow x^2-2^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(b,\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(c,\left(x-1\right)\left(2-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

\(d,x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

\(e,|x-1|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

\(f,\left|2x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

Vậy ..............

28 tháng 3 2020

a, x2 - 4 = 0

\(\Leftrightarrow\) (x - 2)(x + 2) = 0

\(\Leftrightarrow\) x = 2 hoặc x = -2

Vậy phương trình x2 - 4 = 0 có nhiều hơn một nghiệm.

b, (x - 1)(x - 2) = 0

\(\Leftrightarrow\) x = 1 hoặc x = 2

Vậy phương trình (x - 1)(x - 2) = 0 có nhiều hơn một nghiệm.

c, (x - 1)(2 - x)(x + 3) = 0

\(\Leftrightarrow\) x = 1 hoặc x = 2 hoặc x = -3

Vậy phương trình (x - 1)(2 - x)(x + 3) = 0 có nhiều hơn một nghiệm.

d, x2 - 3x = 0

\(\Leftrightarrow\) x(x - 3) = 0

\(\Leftrightarrow\) x = 0 hoặc x = 3

Vậy phương trình x2 - 3x = 0 có nhiều hơn một nghiệm.

e, \(|\)x - 1\(|\) = 3

\(\Leftrightarrow\) x - 1 = 3 hoặc x - 1 = -3

\(\Leftrightarrow\) x = 4 hoặc x = -2

Vậy phương trình \(|\)x - 1\(|\) = 3 có nhiều hơn một nghiệm.

f, \(|\)2x - 1\(|\) = 1

\(\Leftrightarrow\) 2x - 1 = 1 hoặc 2x - 1 = -1

\(\Leftrightarrow\) x = 1 hoặc x = 0

Vậy phương trình \(|\)2x - 1\(|\) = 1 có nhiều hơn một nghiệm.

Chúc bạn học tốt!