Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Lý luận chung cho cả 2 câu a) và b) :
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0
a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
Chứng minh rằng
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}(n\inℕ^∗,n\ne1)\)
Giúp mình với
Với số tự nhiên n khác 0 và 1 ta có:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n}=\frac{1}{n\left(n+1\right)}+\frac{1}{n+1}\)
đk : x khác 0 và -1
\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(< =>\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(đpcm\right)\)
1+2+3+...+n=aaa
n(n+1) :2= a.111
n(n+1):2=a.3.37
n(n+1)=2.3.37.a
n(n+1)=6.37.a
vì n thuộc N*
=>n+1 thuộc N*
=>n(n+1) là hai số tự nhiên liên tiếp
mà 6.37.a với a là chữ số
=>6.a và 37 là 2 số t/n liên tiếp
=>6a =36
=>a=6
với a=6 thì n=36
vậy a=6 và n=36