K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

       \(81^7-27^9-9^{13}\)         

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{26}.5\)

\(=3^{22}.3^4.5=3^{22}.405⋮405\)

       \(12^{2n+1}+11^{n+2}\)

\(=144^n.12+11^n.121\)

\(=144^n.12-11^n.12+11^n.133\)

\(=\left(144^n-11^n\right).12+11^n.133\)

Ta có: \(a^n-b^n⋮a-b\Rightarrow144^n-11^n⋮133\)

Vậy \(12^{2n+1}+11^{n+2}⋮133\)

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

18 tháng 11 2018

a, \(x^{27}+x^9+x^3+x=\left(x^{27}-x\right)+\left(x^9-x\right)+\left(x^3-x\right)+4x\)

\(=x\left[\left(x^2\right)^{13}-1\right]+x\left[\left(x^2\right)^4-1\right]+x\left(x^2-1\right)+4x\)

\(=x\left(x^2-1\right)A+x\left(x^2-1\right)B+x\left(x^2-1\right)C+4x\)

\(=x\left(x^2-1\right)\left(A+B+C\right)+4x\)

Vậy số dư là 4x

b, \(x^{99}+x^{55}+x^{11}+x+7=\left(x^{99}+x\right)+\left(x^{55}+x\right)+\left(x^{11}+x\right)-2x+7\)

Đến đây tương tự a

4 tháng 7 2019

Ta sẽ chứng minh bằng phương pháp quy nạp

Tại x=0x=0 ta có điều phải chứng minh

Giả sử tại x=kx=k thỏa mãn 

⇒133|(122k+1+11k+2)⇒133|(122k+1+11k+2)

Ta sẽ chứng minh tại n=k+1n=k+1 cũng thảo mãn 

⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133

Vậy ta có Q.E.DQ.E.D

Nhát chém mạnh vào quy nạp: ĐỒNG DƯ ĐÂY!

Ta có: 122n+1+11n+2=133(144n+11n)−(112144n+12.11n)122n+1+11n+2=133(144n+11n)−(112144n+12.11n)

Ta chỉ cần chứng minh:112144n+12.11n112144n+12.11n chia hết cho 133.Ta có:

112144n≡11n+2112144n≡11n+2(mod 133)(1)

Ta lại có:12≡−11212≡−112(mod 133)

⇔12.11n≡−11n+2⇔12.11n≡−11n+2(mod 133)(2)

Cộng (1) và (2), ta có đpcm. :closedeyes:

Ta sẽ chứng minh bằng phương pháp quy nạp

Tại x=0x=0 ta có điều phải chứng minh

Giả sử tại x=kx=k thỏa mãn 

⇒133|(122k+1+11k+2)⇒133|(122k+1+11k+2)

Ta sẽ chứng minh tại n=k+1n=k+1 cũng thảo mãn 

⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133

Vậy ta có Q.E.DQ.E.D

Nhát chém mạnh vào quy nạp: ĐỒNG DƯ ĐÂY!

Ta có: 122n+1+11n+2=133(144n+11n)−(112144n+12.11n)122n+1+11n+2=133(144n+11n)−(112144n+12.11n)

Ta chỉ cần chứng minh:112144n+12.11n112144n+12.11n chia hết cho 133.Ta có:

112144n≡11n+2112144n≡11n+2(mod 133)(1)

Ta lại có:12≡−11212≡−112(mod 133)

⇔12.11n≡−11n+2⇔12.11n≡−11n+2(mod 133)(2)

Cộng (1) và (2), ta có \(đpcm\) 

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

5 tháng 11 2018

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

5 tháng 11 2018

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp

25 tháng 12 2020

a, \(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+15=15\)

7 tháng 10 2020

a) ( 3x - 1 )2 - 16 = ( 3x - 1 )2 - 42 = ( 3x - 1 - 4 )( 3x - 1 + 4 ) = ( 3x - 5 )( 3x + 3 ) = 3( 3x - 5 )( x + 1 )

b) ( 5x - 4 )2 - 49x2 = ( 5x - 4 )2 - ( 7x )2 = ( 5x - 4 - 7x )( 5x - 4 + 7x ) = ( -2x - 4 )( 12x - 4 ) = -2( x + 2 ).4( 3x - 1 ) = -8( x + 2 )( 3x - 1 )

c) ( 2x + 5 )2 - ( x - 9 )2 = [ ( 2x + 5 ) - ( x - 9 ) ][ ( 2x + 5 ) + ( x - 9 ) ] = ( 2x + 5 - x + 9 )( 2x + 5 + x - 9 ) = ( x + 14 )( 3x - 4 )

d) ( 3x + 1 )2 - 4( x - 2 )2 = ( 3x + 1 )2 - 22( x - 2 )2 = ( 3x + 1 )2 - [ 2( x - 2 ) ]2 = ( 3x + 1 )2 - ( 2x - 4 )2 = [ ( 3x + 1 ) - ( 2x - 4 ) ][ ( 3x + 1 ) + ( 2x - 4 ) ] = ( 3x + 1 - 2x + 4 )( 3x + 1 + 2x - 4 ) = ( x + 5 )( 5x - 3 )

e) 9( 2x + 3 )2 - 4( x + 1 )2 = 32( 2x + 3 )2 - 22( x + 1 )2 = [ 3( 2x + 3 ) ]2 - [ 2( x + 1 ) ]2 = ( 6x + 9 )2 - ( 2x + 2 )2 = [ ( 6x + 9 ) - ( 2x + 2 ) ][ ( 6x + 9 ) + ( 2x + 2 ) ] = ( 6x + 9 - 2x - 2 )( 6x + 9 + 2x + 2 ) = ( 4x + 7 )( 8x + 11 )

f) 4b2c2 - ( b2 + c2 - a2 )2 = ( 2bc )2 - ( b2 + c2 - a2 )2 = [ 2bc - ( b2 + c2 - a2 ) ][ 2bc + ( b2 + c2 - a2 ] = ( 2bc - b2 - c2 + a2 )( 2bc + b2+ c2 - a2 ) = [ a2 - ( b2 - 2bc + c2 ) ][ ( b2 + 2bc + c2 ) - a2 ] = [ a2 - ( b - c )2 ][ ( b + c )2 - a2 ] = ( a - b + c )( a + b - c )( b + c - a )( b + c + a )

7 tháng 10 2020

g) ( ax + by )2 - ( ay + bx )2 

= [ ( ax + by ) - ( ay + bx ) ][ ( ax + by ) + ( ay + bx ) ]

= ( ax + by - ay - bx )( ax + by + ay + bx )

= [ a( x - y ) - b( x - y ) ][ a( x + y ) + b( x + y ) ]

= ( a - b )( x - y )( x + y )( a + b )

h) ( a2 + b2 - 5 )2 - 4( ab + 2 )2 

= ( a2 + b2 - 5 )2 - 22( ab + 2 )2 

= ( a2 + b2 - 5 )2 - [ 2( ab + 2 ) ]2 

= ( a2 + b2 - 5 )2 - ( 2ab + 4 )2 

= [ ( a2 + b2 - 5 ) - ( 2ab + 4 ) ][ ( a2 + b2 - 5 ) + ( 2ab + 4 ) ]

= ( a2 + b2 - 5 - 2ab - 4 )( a2 + b2 - 5 + 2ab + 4 )

= [ ( a2 - 2ab + b2 ) - 9 ][ ( a2 + 2ab + b2 ) - 1 ]

= [ ( a - b )2 - 32 ][ ( a + b )2 - 12 ]

= ( a - b - 3 )( a - b + 3 )( a + b - 1 )( a + b + 1 )

i) ( 4x2 - 3x - 18 )2 - ( 4x2 + 3x )2

= [ ( 4x2 - 3x - 18 ) - ( 4x2 + 3x ) ][ ( 4x2 - 3x - 18 ) + ( 4x2 + 3x ) ]

= ( 4x2 - 3x - 18 - 4x2 - 3x )( 4x2 - 3x - 18 + 4x2 + 3x )

= ( -6x - 18 )( 8x2 - 18 )

= -6( x + 3 ).2( 4x2 - 9 )

= -12( x + 3 )( 2x - 3 )( 2x + 3 )

k) 9( x + y - 1 )2 - 4( 2x + 3y + 1 )2

= 32( x + y - 1 )2 - 22( 2x + 3y + 1 )2

= [ 3( x + y - 1 ) ]2 - [ 2( 2x + 3y + 1 ) ]2

= ( 3x + 3y - 3 )2 - ( 4x + 6y + 2 )2

= [ ( 3x + 3y - 3 ) - ( 4x + 6y + 2 ) ][ ( 3x + 3y - 3 ) + ( 4x + 6y + 2 ) ]

= ( 3x + 3y - 3 - 4x - 6y - 2 )( 3x + 3y - 3 + 4x + 6y + 2 )

= ( -x - 3y - 5 )( 7x + 9y - 1 )

l) -4x2 + 12xy - 9y2 + 25

= 25 - ( 4x2 - 12xy + 9y2 )

= 52 - ( 2x - 3y )2

= ( 5 - 2x + 3y )( 5 + 2x - 3y )

m) x2 - 2xy + y2 - 4m2 + 4mn - n2

= ( x2 - 2xy + y2 ) - ( 4m2 - 4mn + n2 )

= ( x - y )2 - ( 2m - n )2

= ( x - y - 2m + n )( x - y + 2m - n )