K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)

\(=\sqrt{\left(x^2+y^2-2xy\right)+2\left(x-y\right)+1+4}+2\left(y^2-4y+4\right)+2007\)\(=\sqrt{\left(x-y+1\right)^2+4}+2\left(y-2\right)^2+2007\ge2007\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

10 tháng 7 2019

Theo như bài của bạn thì GTNN là 2009 đấy

8 tháng 7 2019

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

6 tháng 12 2016

mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối

\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường

\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong

\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)

\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)

\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)

\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)

\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)

6 tháng 12 2016

\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)

Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)

Thế x = 2y vào (2) ta được

\(\left(4y^2-5\right)^2=4y-2y+5\)

\(\Leftrightarrow16y^4-40y^2-2y+20=0\)

\(\Leftrightarrow8y^4-20y^2-y+10=0\)

\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)

\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)

Tới đây thì đơn giản rồi. Cái còn lại làm tương tự

11 tháng 6 2018

\(M=\sqrt{x^2+y^2-2xy+2x-2y+10}+2y^2-8y+2024\\ =\sqrt{\left(x^2+y^2+1-2xy+2x-2y\right)+9}+\left(2y^2-8y+8\right)+2016\\ =\sqrt{\left(x-y+1\right)^2+9}+2\left(y^2-4y+4\right)+2016\\ =\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2016\) \(\text{Do }\left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+9\ge9\forall x;y\\ \Rightarrow\sqrt{\left(x-y+1\right)^2+9}\ge3\forall x;y\\ Mà\text{ }2\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2\ge3\forall x;y\\ M=\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2016\ge2019\forall x;y\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2\left(y-2\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=0\\x-y+1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(M_{Min}=2019\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

11 tháng 6 2018

\(Q=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\\ =\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-3\right)^2}\\ =\left|5x-2\right|+\left|5x-3\right|\\ =\left|5x-2\right|+\left|3-5x\right|\)

Áp dụng BDT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow\left|5x-2\right|+\left|3-5x\right|\ge\left|5x-2+3-5x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi:

\(\left(5x-2\right)\left(3-5x\right)\ge0\\\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x-2\ge0\\3-5x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5x-2\le0\\3-5x\le0\end{matrix}\right.\end{matrix}\right. \) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x\ge2\\5x\le3\end{matrix}\right.\\\left\{{}\begin{matrix}5x\le2\\5x\ge3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{5}\\x\le\dfrac{3}{5}\end{matrix}\right.\left(T/m\right)\\\left\{{}\begin{matrix}x\le\dfrac{2}{5}\\x\ge\dfrac{3}{5}\end{matrix}\right.\left(K^0\text{ }T/m\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2}{5}\le x\le\dfrac{3}{5}\)

Vậy \(Q_{Min}=1\) khi \(\dfrac{2}{5}\le x\le\dfrac{3}{5}\)

11 tháng 11 2016

Đề thi vào 10  tỉnh hưng yên năm 2013 thì phải

7 tháng 12 2016

từ pt(1) ta có được (x - 2y)(x - y - 2)=0
với  x=2y thì thay vào ta được ( 2y^2 + y - 2)(4y^2 - 2y - 5)=0
với x - y =2 thì ta có (x^2 - 5)^2 = 9
phần còn lại tự làm vậy