Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Ta có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)
\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)
Ta đặt cm là A
Vì 1/2 < 2/3 ; 3/4 < 4/5 ; 5/6 < 6/7 ; ...;99/100<100/101
=> A = 1/2 x 3/4 x 5/6 x...x 99/100 < B= 2/3 X 4/5 X 6/7 X....X100/101
=> A x A < A x B = 1 x 3 x 5 x 99 / 2 x 4 x 6 x ......x 100 x 2 x 4 x 6 x ...x 100/3 x 5 x 7 x ...x 101
Ta rút gọn 2 x 4 x 6 x ..x 100 và 3 x 5 x ...x 99 ta còn 1/101
=>A^2 < 1/101 => A^2 < 1/101 < 1/100 = > A ^ 2 <1/100 => A^2 ,(1/10 ^2
=> A < 1/10
Chứng minh A > 1/15
1/2 = 1/2
3/4 >2/3
5/6 > 4/5
......
99/100 > 98/99
A^2 > 1/2 x ( 1/2 x 2/3 x 3/4 x ...x 98/99 x 99/100
A^2 > 1/2 x 1/100
A^2 > 1/200 > 1/225
A^2 > (1/15) ^2
Vậy A > 1/15
......................?
mik ko biết
mong bn thông cảm
nha ................
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)