Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=0\) ( 1 )
Ta có :
\(x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
Để ( 1 ) = 0
\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)
\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(x^2+y^2=0\) với \(x=y=0\) là mệnh đề đúng
\(x^2+y^2=0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề sai
b) \(x^2+y^2\ne0\) ( 2 )
Vì \(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)
\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)
\(x^2+y^2\ne0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng
\(x^2+y^2\ne0\) với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
a: \(-x^2+x+6=-\left(x^2-x-6\right)=-\left(x-3\right)\left(x+2\right)\)
Câu b không phân tích được nhé bạn
\(=cot\left(\dfrac{7\pi}{2}-a\right)=cot\left(3\pi+\dfrac{\pi}{2}-a\right)=cot\left(\dfrac{\pi}{2}-a\right)=tana\)