K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Không tồn tại các số nguyên x,y,z sao cho 3x-2y-2015z=85 Vì:

-Ta luôn biết 3x(x\(\in Z\)\(\in Z\) thuộc Z)  là số lẻ.(1)

-Ta luôn biết 2y(y thuộc Z) là số chẵn.(2)

-Ta luôn biết 2015z(z thuộc Z) là số lẻ.(3)

-ta cũng biết số lẻ - số chẵn=số lẻ và số lẻ - số lẻ = số chẵn.(4)

Từ (1);(2);(3);(4) ta có: 3- 2- 2015z

                               =Số lẻ - số chẵn - số lẻ

                              =số lẻ - số lẻ=số chẵn mà 85 là số lẻ trái với đề bài.

Vậy không tồn tại các số x,y,z sao cho........

26 tháng 5 2016

Ta có: \(\frac{2010}{x}-\frac{2010}{y}=\frac{2010y-2010x}{xy}\)

\(\Rightarrow\frac{2010\left(y-x\right)}{xy}=\frac{2010}{x-y}\)

\(\Rightarrow2010\left(y-x\right)\left(x-y\right)=2010xy\)

\(\Rightarrow\left(y-x\right)\left(x-y\right)=xy\)

Vậy ta có 4 trường hợp:

TH1:  y-x=x

=> y=2x

=> x-y = âm => xy= âm   ( loại)

TH2:   y-x=y

=> x= 0  ( vì x, y dương)

=> x-y= âm  => xy = âm    ( loại)

TH3:  x-y=y

=> x=2y

=> y-x = âm => xy = âm    ( loại)

TH4: x-y=x

=> y = 0 ( vì x, y dương)

=> y-x= 0-x= âm  => xy âm    ( loại)

Từ 4 trường hợp trên \(\Rightarrow\) ko tồn tại x, y dương để \(\frac{2010}{x}-\frac{2010}{y}=\frac{2011}{x-y}\)

26 tháng 5 2016

Ta có : 

\(\frac{2010}{x}-\frac{2010}{y}=\frac{2011}{x-y}\Leftrightarrow2010\left(\frac{1}{x}-\frac{1}{y}\right)=2011.\frac{1}{x-y}\Leftrightarrow\frac{2010}{2011}=\frac{\frac{1}{x-y}}{\frac{1}{x}-\frac{1}{y}}\Leftrightarrow\frac{2010}{2011}=\frac{\frac{1}{x-y}}{\frac{x-y}{-xy}}\Leftrightarrow\frac{2010}{2011}=-\frac{xy}{\left(x-y\right)^2}\)

Xét vế trái (VT) : \(\frac{2010}{2011}>0\) ; Vế phải (VP) : \(-\frac{xy}{\left(x-y\right)^2}< 0\)với mọi x,y dương

=> VP < VT (vô lí)

Vậy : Không tồn tại các số x,y dương thỏa mãn đề bài.

30 tháng 5 2017

Ta có: 46.y là số chẵn với mọi số nguyên y

TH1: Nếu x là số nguyên tố lớn hơn 2 thì suy ra 59.x là số lẻ 

suy ra 59.x + 46.y là số lẻ 

mà 2004 là số chẵn nên loại trường hợp này.

TH2: Từ TH1 suy ra x phải là số chẵn

Mà trong số nguyên tố thì chỉ có số 2 là số nguyên tố chẵn

Từ đó suy ra x = 2

suy ra y = ( 2004 - 59.2 ) : 46 = 41

Vậy x = 2 ; y = 41

b/ Ta thấy 30.b luôn luôn có tận cùng bằng 0 với mọi b

TH1: a là số nguyện chẵn thì 55.a sẽ có tận cùng là 0

Vậy ta có: 55.a + 30.b = ....0 + .....0 = ....0

mà 3658 tận cùng là 8 nên loại trường hợp này. ( 1 )

TH2: a là số nguyên lẻ thì 55.a sẽ có tận cùng là 5

Vậy ta có: 55.a + 30.b = .....5 + .....0 = .....5

mà 3658 có tận cùng là 8 nên loại trường hợp này. ( 2 )

Từ ( 1 ) và ( 2 ) suy ra không tồn tại a,b để 55.a + 30.b = 3658

Vậy: Không tồn tại a,b thỏa mãn đề bài

Nhớ k cho mình nhé!

15 tháng 4 2018

Bài 1:

ta có: xy -2x +y +1 =0

x.( y-2) = -(y+1 )

=> x = -( y+1)  / y-2

x = - ( y-2 +1) / y-2

x = -( y - 2)- 1 / y-2

\(x=\frac{-\left(y-2\right)}{y-2}-\frac{1}{y-2}=\left(-1\right)-\frac{1}{y-2}\)

để x thuộc z

\(\Rightarrow\frac{1}{y-2}\inℤ\Rightarrow1⋮y-2\)

\(\Rightarrow y-2\inƯ_{\left(1\right)}=\left(1;-1\right)\)

nếu y - 2 =1 => y = 3 (TM) => x = - ( 3+1)/ 3 -2 => x = -4/1 => x = -4 (TM)

y-2 = -1 => y = 1 (TM) => x = - ( 1 +1) / 1-2 => x = -2/-1 => x = 2(TM)

KL: (x;y) =( -4;3);(2;1)

Bài 2:

ta có: \(\frac{4n+5}{2n-1}=\frac{4n-2+7}{2n-1}=\frac{2.\left(2n-1\right)+7}{2n-1}=\frac{2.\left(2n-1\right)}{2n-1}+\frac{7}{2n-1}=2+\frac{7}{2n-1}\)

để 4n+5/ 2n-1 thuộc z

\(\Rightarrow\frac{7}{2n-1}\in z\Rightarrow7⋮2n-1\)

\(\Rightarrow2n-1\inƯ_{\left(7\right)}=\left(7;-7;1;-1\right)\)

nếu 2n -1 =7 => 2n =8 => n =4 (TM)

2n-1 =-7 => 2n = -6 => n =-3 (TM)

2n-1 =1 => 2n = 2 => n= 1 (TM)

2n -1 =-1 => 2n =0 => n=0 (TM)

KL: n =...................... để phân số ........... thuộc z

Chúc bn học tốt !!!!!

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không có số x

12 tháng 3 2019

có tồn tại hoặc ko