Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
xét abc lẻ
=>a chẵn=>abc là số chẵn(trái giả thuyết)
xét abc chẵn:
=>a;b;c lẻ=>abc lẻ(trái giả thuyết)
Vậy không tồn tại a;b;c
Ta xét a,b,c:Nếu là chẵn:
=>a,b,c lẻ(trái với yêu cầu)
:Nếu là lẻ:
=>a là chẵn =>abc chẵn(trái với yêu cầu)
=>không tồn tại các số tự nhiên a,b,c
Help me! I must finish homwork on Tuesday afternoon.