K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2019

Đặt \(\frac{3}{5}=cosa;\frac{4}{5}=sina\)

\(f\left(x\right)=5.sin\left(x+a\right)-\left(m^3-4m+3\right)x-m+5\)

Dễ dàng nhận thấy \(f\left(x\right)\) là hàm liên tục

- Nếu \(m^3-4m+3\ne0\)

Khi \(m>0\Rightarrow\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\); \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 lần đổi dấu trên R \(\Rightarrow f\left(x\right)=0\) có nghiệm

Tương tự, khi \(m< 0\Rightarrow f\left(+\infty\right)=-\infty\) ; \(f\left(-\infty\right)=+\infty\) nên \(f\left(x\right)=0\) có nghiệm

\(\Rightarrow\) Phương trình vô nghiệm khi và chỉ khi \(\left\{{}\begin{matrix}m^2-4m+3=0\\m>0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)

TH1: m=-1

BPT sẽ là:

-2(-1-1)x-3-3>0

=>4x-6>0

=>x>6/4

=>Loại
TH2: m<>-1

Δ=(2m-2)^2-4(m+1)(3m-3)

=4m^2-8m+4-4(3m^2-3)

=4m^2-8m+4-12m^2+12

=-8m^2-8m+16

Để BPT vô nghiệm thì -8m^2-8m+16<=0 và m+1<0

=>m^2+m-2>=0 và m<-1

=>(m+2)(m-1)>=0 và m<-1

=>(m>=1 hoặc m<=-2) và m<-1

=>m<=-2

1 tháng 4 2017

Đáp án D.

Ta có:

P T ⇔ m 9 4 x - 2 m + 1 6 4 x + m ≤ 0

⇔ m 3 2 2 x - 2 m + 1 3 2 x + m ≤ 0

Đ ặ t   t = 3 2 x ;   d o   x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 .

Khi đó PT trở thành:

  m t 2 - 2 m + 1 t + m ≤ 0 ⇔ m t 2 - 2 t + 1 ≤ t

Rõ ràng t =1 là nghiệm của BPT đã cho.

D o   đ ó   B P T   n g h i ệ m   đ ú n g   v ớ i   ∀ t ∈ 1 ; 3 2

⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6 .

Vậy có 6 giá trị nguyên dương của m thỏa mãn.

 

12 tháng 12 2019

Chọn C

nên hàm t = t (x) nghịch biến trên (-2;2)

 

Thay vào bất phương trình trên được:

Bất phương trình đã cho nghiệm đúng với mọi x ∈ - 2 ; 2  nếu và chỉ nếu bất phương trình

nghiệm đúng với mọi  t ∈ - 6 ; 2

tam thức bậc hai f t = 2 t 2 - m t + 3 m - 5 có hai nghiệm thỏa mãn

Kết hợp với m ∈ - 10 ; 10   thì  m ∈ - 10 ; - 9 ; - 8

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

6 tháng 4 2018

Chọn C.

 

Bất phương trình

Đặt , khi đó bất phương trình trở thành x2-2tx-2t+3> 0     (*)

Bất phương trình (*) nghiệm đúng với mọi x  khi và chỉ khi  


Vậy có tất cả 7 giá trị nguyên của  a  thỏa mãn yêu cầu bài toán.

 

6 tháng 9 2017

Chọn B

19 tháng 9 2017

NV
11 tháng 6 2019

Câu 1:

\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)

Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)

\(\Rightarrow a^2+a-5=m\) (1)

Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)

\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương

Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương

Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)

Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)

\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)

\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)

\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)

NV
11 tháng 6 2019

Câu 2:

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)

Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)

\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)

\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)

Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)

\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)

\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)

\(\Rightarrow m\ge-\frac{3}{7}\)

NV
5 tháng 1 2021

\(\Leftrightarrow\dfrac{3^x+3}{\sqrt{9^x+1}}=m\)

Đặt \(3^x=t>0\)

\(\Rightarrow\dfrac{t+3}{\sqrt{t^2+1}}=m\)

Xét hàm \(f\left(t\right)=\dfrac{t+3}{\sqrt{t^2+1}}\) khi \(t>0\) rồi lập BBT, từ đó xác định ra m có vẻ khá đơn giản