K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Ta thấy \(\overline{abc}+\overline{bca}+\overline{cab}=111\left(a+b+c\right)=3.37\left(a+b+c\right)\)

Do 3 và 37 là các số nguyên tố, để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương thì \(a+b+c=3.37.k^2\left(k\in N,k\ne0\right)\)

Tuy nhiên do a, b, c là các chữ số nên \(a+b+c\le27\)

Vậy không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài.

20 tháng 3 2016

ta có 

s = abc + bca + cab

=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> S = 111a + 111b + 111c

=> S = 111( a+b+c )= 37 . 3( a+b + c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

                       3(a+b+c) chia hết 37

                      => a+b+c chia hết cho 37

không chính phương

16 tháng 3 2017

\(\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Do (3;37)=1 nên để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương ta cần a+b+c=111 hoặc a+b+c=1112n+1 (*)

Mà \(a;b;c\le9\)và \(a\ne0\) =>  \(a+b+c\le27\)   nên không thể thỏa mãn (*) được

=> Ta không thể tìm được các số tự nhiên a;b;c => đpcm

1 tháng 1 2018

Có : abc+bca+cab = 100a+10b+c+100b+10c+a+100c+10a+b = 111.(a+b+c)

Để 111.(a+b+c) là 1 số chính phương thì a+b+c phải chia hết cho 111

Mà 1 < = a+b+c < = 27 => ko tồn tại a,b,c để 111.(a+b+c) chính phương

k mk nha

1 tháng 1 2018

Không tồn tại

4 tháng 7 2019

Ta có: \(\overline{abc}+\overline{bac}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10a+c\right)+\left(100c+10a+b\right)\)

\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)\)

\(=37.3.\left(a+b+c\right)\)

Vì \(a+b+c\le27\)nên a + b + c không chia hết cho 37

\(\Rightarrow\)3(a + b + c) không chia hết cho 37

Vậy \(\overline{abc}+\overline{bac}+\overline{cab}\)không thể là số chính phương

2 tháng 4 2020

a) Câu hỏi của Kinamoto Asaki - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo câu a tại link trên

b) Không có số tự nhiên \(\overline{abc}\) nào.

Tham khảo link: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath

2 tháng 4 2020

a) Tham khảo link này: https://olm.vn/hoi-dap/detail/243967614372.html

b) Tham khảo link này: https://olm.vn/hoi-dap/detail/6393397984.html

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

2 tháng 9 2020

\(A=\overline{abc}+\overline{bca}+\overline{cab}\)

\(A=100a+10b+c+100b+10c+a+100c+10a+b\)

\(A=111a+111b+111c\)

\(A=111\left(a+b+c\right)\)

Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321

nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn

vậy A không là số chính phương

4 tháng 7 2016

\(S=abc+bca+cab+ab+bc+ca\)

\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)

\(=122a+122b+122c\)

\(=122\left(a+b+c\right)\)

\(=61.2\left(a+b+c\right)\)

Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.

a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.

Do đó S không thể là số chính phương.

vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath

t i c k nhé!! 46457645774745756858768967969689088558768578769