Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(3x^5-x^3+6x^2-18x=213\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x=71\)
Vì x nguyên nên\(x^5,2x^2,6x\in Z\Rightarrow\frac{x^3}{3}\inℤ\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\)(vì 3 là số nguyên tố)
Đặt x = 3k\(\Rightarrow\frac{x^3}{3}=\frac{\left(3k\right)^3}{3}=\frac{27k^3}{3}=9k^3⋮3\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x⋮3\)(vì x chia hết cho 3)
.Mà 71 chia 3 dư 2 nên không có số nguyên x thỏa mãn.
Giả sử tồn tại số nguyên x thỏa mãn đề.
Ta có : \(3x^5-x^3+6x^2-18x=213\)
Do : \(213⋮3,3x^5⋮3,6x^2⋮3,18x⋮3\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮9\)
Lại có : \(3x^5⋮9,6x^2⋮9,18x⋮9\)
Nên : \(213⋮9\), Mặt khác \(213⋮̸9\)
Do đó không tồn tại số nguyên x thỏa mãn đề.
Giả sử tồn tại \(x\in Z\) để \(3\left(x^5+2x^2-5x\right)-x^3=213\)
Do \(\left\{{}\begin{matrix}3\left(x^5+2x^2-5x\right)⋮3\\213⋮3\end{matrix}\right.\) \(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮27\)
\(\Rightarrow VT=x\left(3x^4-x^2+6x-15\right)⋮27\)
Mà \(VP=213⋮̸27\Rightarrow VT\ne VP\) (vô lý)
Vậy điều giả sử là sai \(\Rightarrow\) không tồn tại \(x\in Z\) thỏa mãn phương trình
a, x^2-x=0
<=> x(x-1)=0 => x=0 hoặc x=1 thay vào A là tính được
b,có cho y đâu mà tính
Làm tắt thôi nhé bn !
Có h(x) = f (x) + g (x) = 3x2 + 2 ( sau khi tính kết quả sẽ ra vậy nhé ! mk làm tắt )
Lại có h ( x) có :
3x2 \(\ge\)0
2 >0
Từ 2 điều này => 3x2 +2 \(\ge2\)
=> h(x) ko có nghiệm
Lời giải:
Giả sử có tồn tại. Khi đó:
$x^3=3x^5+6x^2-18x-213\vdots 3$
$\Rightarrow x\vdots 3$. Đặt $x=3a$ với $a$ nguyên. Khi đó:
$3(3a)^5-(3a)^3+6(3a)^2-18.3a=213$
$729a^5-27a^3+54a^2-54a=213$
$81a^5-3a^3+6a^2-6a=\frac{71}{3}$ (vô lý vì vế trái nguyên còn vế phải thì không)
Do đó không tồn tại số nguyên $x$ thỏa mãn đẳng thức đã cho
Từ tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{3}=\dfrac{2y-6}{9}=\dfrac{\left(3x+2\right)+\left(2y-6\right)}{3+9}=\dfrac{3x+2y-4}{12}=\dfrac{3x+2y-4}{6x}\)
Suy ra 6x = 12 <=> x = 12 : 6 = 2
Khi đó \(\dfrac{3x+2}{3}=\dfrac{3\cdot2+2}{3}=\dfrac{8}{3}\)
Suy ra \(\dfrac{2y-6}{9}=\dfrac{8}{3}\Leftrightarrow2y-6=\dfrac{8\cdot9}{3}=24\)
\(\Leftrightarrow2y=24+6=30\Leftrightarrow y=30:2=15\)
Vậy x = 2; y = 15