Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
Ta có: \(3x^5-x^3+6x^2-18x=213\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x=71\)
Vì x nguyên nên\(x^5,2x^2,6x\in Z\Rightarrow\frac{x^3}{3}\inℤ\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\)(vì 3 là số nguyên tố)
Đặt x = 3k\(\Rightarrow\frac{x^3}{3}=\frac{\left(3k\right)^3}{3}=\frac{27k^3}{3}=9k^3⋮3\)
\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x⋮3\)(vì x chia hết cho 3)
.Mà 71 chia 3 dư 2 nên không có số nguyên x thỏa mãn.
Giả sử tồn tại số nguyên x thỏa mãn đề.
Ta có : \(3x^5-x^3+6x^2-18x=213\)
Do : \(213⋮3,3x^5⋮3,6x^2⋮3,18x⋮3\)
\(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮9\)
Lại có : \(3x^5⋮9,6x^2⋮9,18x⋮9\)
Nên : \(213⋮9\), Mặt khác \(213⋮̸9\)
Do đó không tồn tại số nguyên x thỏa mãn đề.
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Ta thấy (x2,y2,z2)\(⋮\)2 nên xảy ra 2 trường hợp
- Trong 3 số x,y,z có 1 số chẵn,hai số lẻ,chẳng hạn x chẵn,y và z lẻ. Khi đó VT chia 4 dư 2,còn vế phải 2xyz chia hết cho 4 (loại)
- Ba số x,y,z đều chẵn. Đặt x=2x1,y=2y1,z=2z1 rồi chứng minh rằng nghiệm x1,y1,z1 cũng là số chẵn ( phương pháp lùi vô hạn)
mà xyz khác 0 nên không tồn tại x,y,z thỏa mãn đề bài
Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:
\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn
\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Vậy PT vô nghiệm.
Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được
\(xy-2x+3y=13\)
\(x\left(y-2\right)+3y-6=13-6\)
\(x\left(y-2\right)+3\left(y-2\right)=7\)
\(\left(y-2\right)\left(x+3\right)=7\)
\(\Rightarrow\left(y-2\right);\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng giá trị
x+3 | 1 | -1 | 7 | -7 |
y-2 | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 9 | -5 | 3 | 1 |
Vậy có các cặp số (x;y) là: (-2;9);(-4;-5);(4;3);(-10;1)
Tham khảo nhé~
\(xy-2x+3y=13\Leftrightarrow x\left(y-2\right)+3y-6=7\)
\(\Leftrightarrow x\left(y-2\right)+3\left(y-2\right)=7\Leftrightarrow\left(y-2\right)\left(x+3\right)=7\)
Tự làm tiếp nha !
Giả sử tồn tại \(x\in Z\) để \(3\left(x^5+2x^2-5x\right)-x^3=213\)
Do \(\left\{{}\begin{matrix}3\left(x^5+2x^2-5x\right)⋮3\\213⋮3\end{matrix}\right.\) \(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮27\)
\(\Rightarrow VT=x\left(3x^4-x^2+6x-15\right)⋮27\)
Mà \(VP=213⋮̸27\Rightarrow VT\ne VP\) (vô lý)
Vậy điều giả sử là sai \(\Rightarrow\) không tồn tại \(x\in Z\) thỏa mãn phương trình