Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
mình ko biết xin lỗi bạn nha
đặt n^2+2006=a^2
=>2006=a^2-n^2
=>2006=(a-n)(a+n)
vì tích của a-n và a+n là 1 số chẵn nên trong 2 số sẽ có ít nhất 1 số chẵn (1)
mặt khác: a-n+(a+n)=2a là 1 số chẵn=> a-n và a+n phải cùng tính chẵn lẻ(2)
từ (1) và(2) suy ra a-n và a+n là 2 số chẵn
đặt a-n=2x;a+n=2y(x,y thuộc Z)
=>(a-n)(a+n)=2x.2y
=>2x.2y=2006
=>4xy=2006
vì x,y là số nguyên nên 2006 phải chia hết cho 4(vô lí, vì 2006 ko chia hết cho 4)
vậy ko tồn tại số nguyên n để n^2+2006 là 1 số chính phương
2/ vì n là số nguyên tố lơn hơn 3 nên n ko chia hết cho 3=>n có dạng 3k+1;3k+2
+) nếu n=3k+1
=>n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số
+)nếu n=3k+2
=>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số
vậy n^2+2006 là hợp số với n>3
tick nha
Giả sử a2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 (A thuộc Z) <=> a2 - n2 = 2006
<=> (A - n)(a + n) = 2006 (*)
Thấy a,n khác tính chẵn lẻ thì vế trái của (*) là số lẻ nên không thõa mãn (*)
Nếu a,n cùng tính chẵn hoặc lẻ thì (A - n) chia hết cho 2 và (a + n) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thõa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương