Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp án là 672.mình đang vội nên chỉ viết kết quả thôi nhé
đặt \(17p+1=t^2\Leftrightarrow17p=t^2-1\Leftrightarrow17p=\left(t-1\right)\left(t+1\right)\)
vì p là số nguyên tố =>\(ƯCLN\left(17;p\right)=1\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}t-1=17\\t+1=p\end{matrix}\right.\\\left\{{}\begin{matrix}t+1=17\\t-1=p\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}p=19\left(tm\right)\\p=15\left(loại\right)\end{matrix}\right.\)
Bài 2:
a: \(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2;5;10\right\}\)
hay \(n\in\left\{0;2;3;6;11\right\}\)
b: \(\Leftrightarrow n^2-1+9⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;2;8\right\}\)
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
tao biet nhung tao khong noi dau
nói đi m