K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

C

1 tháng 7 2019

14 = 2 .7 nên phân số  5 14 viết được dưới dạng số thập phân vô hạn tuần hoàn.

 

20  =  2 2 .5nên phân số  1 20 viết được dưới dạng số thập phân hữu hạn.

 

35 75 = 1 25 có 25 =  5 2  nên phân số 35 75 viết được dưới dạng số thập phân hữu hạn.

- 11 - 100 = 11 100 có 100 =  2 2 . 5 2  nên phân số  - 11 - 100 viết được dưới dạng số thập phân hữu hạn.

6 15 = 2 5 có 5 = 5 nên phân số  6 15 viết được dưới dạng số thập phân hữu hạn.

 

Như vậy, trong năm phân số  5 14 ; 1 20 ; 35 75 ; 6 15 có một phân số viết được dưới dạng số thập phân vô hạn tuần hoàn.

 

Đáp án cần chọn là: A

16 tháng 10 2016

Ta có: \(n\left(n+1\right)\left(n+2\right)\) chia hết cho 3.

=> \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) là stp hữu hạn.

4 tháng 12 2019

Ta thấy 45 =  3 2 .5 ; 18 = 2. 3 2  nên các phân số  2 7 ; 2 45 ; - 7 18  đều viết được dưới dạng số thập phân vô hạn tuần hoàn.

 

Phân số  - 5 - 240 = 1 48 có 48 =  2 4 .3 nên phân số  - 5 - 240 viết được dưới dạng số thập phân vô hạn tuần hoàn.

 

Như vậy cả bốn phân số 2 7 ; 2 45 ; - 5 - 240 ; - 7 18 đều viết được dưới dạng số thập phân vô hạn tuần hoàn.

Đáp án cần chọn là: D

29 tháng 3 2019

Ta thấy 45   =   3 2 . 5 ;   18   =   2 . 3 2  nên các phân số Trắc nghiệm: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiếtđược viết dưới dạng số thập phân vô hạn tuần hoàn.

Trắc nghiệm: Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết có 48   =   2 4 . 3 nên phân số -5/-240 được viết dưới dạng số thập phân vô hạn tuần hoàn.

Vậy có 4 phân số được viết dưới dạng số thập phân vô hạn tuần hoàn.

Chọn đáp án D.

16 tháng 10 2016

không

16 tháng 10 2016

HOÀN TOÀN KHÔNG!

 

16 tháng 10 2016

Thử lấy ví dụ 2 số thập phân vô hạn tuần hoàn ta có:

\(0,\left(37\right)=\frac{37}{99}\)

\(0,\left(62\right)=\frac{62}{99}\)

=> 0,(37)+0,(62)=\(\frac{37}{99}+\frac{62}{99}=1\)

Vì 1 là số tự nhiên

=> Tổng  của 2 số thập phân vô hạn tuần hoàn có thể là số tự nhiên