Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcde: 8.7.6.5.2 = 3360
Vậy có 3360 số tự nhiên có 5 chữ số và chia hết cho 5.
Chữ số cần tìm là \(\overline{abcde}\)(chữ số đầu tiên phải khác 0 nên a ≠ 0)
Chọn chữ số cho e, có 2 cách là 0 hoặc 5 (do chia hết cho 5)
+ Nếu e = 0, do các chữ số khác nhau nên a ≠ 0, thỏa mãn điều kiện
Lúc này, chọn chữ số cho a có 9 cách, chọn chữ số cho b có 8 cách, chọn chữ số cho c có 7 cách vào chọn chữ số cho d có 6 cách
Vậy khi e = 0 thì số cách chọn là 2 . 9 . 8 . 7 . 6 = 6048 (cách)
+ Nếu e ≠ 0 thì e = 5, khi đó a vừa phải khác 0 vừa phải khác 5
=> Cách chọn số ở a là 8
=> Cách chọn số ở b là 8. Lí do : khi e = 5, a chọn 1 số khác 0 và 5 thì b có thể chọn bất kì số nào trong 8 số còn lại
=> Cách chọn số ở c là 7
=> Cách chọn số ở d là 6
⇒ Số cách chọn : 8 .8 . 7 . 6 = 2688 (số)
Vậy tổng số số cần tìm là : 2688 + 6048 = 8736 số
Do tổng 6 chữ số trên chia hết cho 3, do đó khi loại đi 2 chữ số để lập thành 1 số có 4 chữ số, thì số đó chia hết cho 3 khi và chỉ khi tổng 2 số bị loại bỏ cũng chia hết cho 3
\(\Rightarrow\) Hai số đó đều chia hết cho 3, hoặc 1 số chia 3 dư 1, một số chia 3 dư 2
TH1: 2 số bị loại đều chia hết cho 3 \(\Rightarrow\) đó là 0 và 3
Hoán vị 4 chữ số còn lại: \(4!\) cách
TH2: 2 số bị loại có 1 số chia 3 dư 1 và 1 số chia 3 dư 2 \(\Rightarrow2.2=4\) cách
Hoán vị 4 chữ số còn lại (và loại trừ trường hợp 0 đứng đầu): \(4!-3!\) cách
Tổng cộng có: \(4!+4.\left(4!-3!\right)=...\) số
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
Ta thấy tổng 5 chữ số nhỏ nhất là \(1+2+3+4+5=15\)
Tổng 5 chữ số lớn nhất là \(3+4+5+6+7=25\)
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là \(1+2+3+4+5+6+7=28\)
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng \(28-18=10\)
Do đó có các trường hợp: loại cặp 3;7 còn 5 số 1;2;4;5;6 hoặc loại cặp 4;6 còn 5 số 1;2;3;5;7
Số số thỏa mãn:
\(3.4!+1.4!=96\) số
để có 4 chữ số khác nhau là số lẻ:
Gọi 4 chữ số là \(\overline{abcd}\)
d có 3 cách chọn {1; 3; 5} (vì là số lẻ)
a có 4 cách chọn số
b có 3 cách chọn số
c có 2 cách chọn số
Theo quy tắc đếm => 3x4x3x2 = 72 số
Gọi số cần tìm là \(\overline{a_1a_2a_3a_4}\)\(\in A=\left\{1;2;3;4;5\right\}\)\(;a_i\ne a_j\)
a)Số đó chia hết cho 2\(\Rightarrow\) Số đó chẵn.
Chọn \(a_4\in\left\{2;4\right\}\) có 2 cách chọn.
Chọn \(a_3\) có \(4\) cách.
Chọn \(a_2\) có 3 cách.
Chọn \(a_1\) có hai cách.
\(\Rightarrow\) Có tất cả \(2\cdot4\cdot3\cdot2=48\) số cần lập.
b)Các số tự nhiên có 4 cữ số khác nhau là chỉnh hợp chập 3 của 5.
\(\Rightarrow\) Có \(A_5^3\)=60 số.
Có tất cả \(60-48=12\) số lẻ cần lập.
Gọi số đó là \(\overline{abcd}\)
TH1: \(d=0\)
\(\Rightarrow\) abc có \(A_9^3=504\) cách chọn
TH2: \(d=5\)
\(\Rightarrow\) a có 8 cách chọn (khác 0 và 5), b có 8 cách (khác a và d), c có 7 cách
\(\Rightarrow8.8.7=448\) cách chọn abc
\(\Rightarrow504+448=952\) số