K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 12 2020

ĐKXĐ: ...

Đặt \(\sqrt{4x+m}=t\ge0\Rightarrow m=t^2-4x\)

\(2x^2-6x=\left(x+1\right)t+t^2-4x\)

\(\Leftrightarrow2x^2-x\left(t+2\right)-t^2-t=0\)

\(\Delta=\left(t+2\right)^2+8\left(t^2+t\right)=\left(3t+2\right)^2\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{t+2+3t+2}{4}=t+1\\x=\dfrac{t+2-3t-2}{4}=-\dfrac{t}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+m}=x-1\left(x\ge1\right)\\\sqrt{4x+m}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=x^2-6x+1\left(x\ge1\right)\\m=4x^2-4x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-8\\-4< m< 0\end{matrix}\right.\)

2 tháng 1 2020

https://olm.vn/thanhvien/chibiverycute là con chó

28 tháng 8 2021

hello

27 tháng 1 2021

a, m2x - 1 < mx + m

⇔ (m2 - m)x < m + 1

Bất phương trình vô nghiệm khi 

\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy phương trình có nghiệm với ∀m ∈ R

b, (m2 + 9)x + 3 ≥ m - 6mx

⇔ (m2 + 6m + 9)x ≥ m + 3

Phương trình có nghiệm đúng với ∀x khi m = -3

c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12

⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12

⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12

Bất phương trình có nghiệm đúng với ∀x khi m = -1

 

 

 

NV
18 tháng 9 2019

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow x\left(x\sqrt{2x+1}-x-x-m\sqrt{2x+1}+2m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x\sqrt{2x+1}-2x-m\sqrt{2x+1}+2m=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow x\left(\sqrt{2x+1}-2\right)-m\left(\sqrt{2x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-m\right)\left(\sqrt{2x+1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-m=0\\\sqrt{2x+1}-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=m\\x=\frac{3}{2}\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb

\(\Leftrightarrow\left[{}\begin{matrix}m\ge-\frac{1}{2}\\m\ne0\\m\ne\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow m=\left\{1;2;3;4;5;6;7;8;9\right\}\)

Có 9 giá trị thỏa mãn