\(\sqrt{\left(m+1\right)x^2-2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2024

ycbt \(\Leftrightarrow\left(m+1\right)x^2-2\left(m-1\right)x+3m-3\ge0,\forall x\inℝ\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[-\left(m-1\right)\right]^2-\left(m+1\right)\left(3m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)^2-3\left(m-1\right)\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left[m-1-3\left(m+1\right)\right]\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left(-2m-4\right)\le0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m\ge1\\m\le-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m\ge1\)

Vậy \(1\le m< 10\)

Sửa đề một chút là "Có bao nhiêu số nguyên..." chứ không phải "Có bao nhiêu số thực..." nhé, vì nếu là số thực thì sẽ có vô hạn số thỏa mãn rồi.

Khi đó \(m\in\left\{1;2;3;...;9\right\}\)

\(\Rightarrow\) Có 9 giá trị m thỏa ycbt.

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

NV
20 tháng 5 2020

Để hàm số xác định \(\forall x\ge2\)

\(\Leftrightarrow\left(m-1\right)x-3m+7\ge0;\forall x\ge2\)

\(\Leftrightarrow\left(m-1\right)x\ge3m-7\)

- Với \(m=1\Rightarrow0\ge-4\) (thỏa mãn)

- Với \(m< 1\Rightarrow x\le\frac{3m-7}{m-1}\Rightarrow\) BPT không thỏa mãn với các giá trị \(x>\frac{3m-7}{m-1}\) trái với giả thiết đúng với mọi \(x\ge2\) (loại)

- Với \(m>1\Rightarrow x\ge\frac{3m-7}{m-1}\)

Để BPT thỏa mãn đề bài

\(\Rightarrow\frac{3m-7}{m-1}\le2\)

\(\Leftrightarrow3m-7\le2m-2\Leftrightarrow m\le5\)

Vậy \(1\le m\le5\)

14 tháng 2 2022

Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)

\(\Leftrightarrow mx-2x+2m-3\ge0\)

\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)

\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)

\(\Rightarrow1\le m\le\dfrac{11}{6}\)

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021