K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 4 2020
\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)
mình đánh nhầm, giúp vs ạ
Lời giải:
$\sqrt{-x^2+2x+3}\leq x^2-2x+m$
$\Leftrightarrow \sqrt{-x^2+2x+3}-x^2+2x\leq m$
Đặt $f(x)=\sqrt{-x^2+2x+3}-x^2+2x$
$f'(x)=\frac{-x+1}{\sqrt{-x^2+2x+3}}-2x+2=0\Leftrightarrow x=1$
Lập bảng biến thiên với các điểm $x=0; x=1; x=2$
$f(0)=\sqrt{3}; f(1)=\sqrt{3}; f(2)=\sqrt{3}$
Từ BBT ta thấy để BPT $f(x)\leq m$ có nghiệm thuộc đoạn $[0;2]$ thì $m\geq \sqrt{3}$
Mà $m< 10$ và $m$ nguyên dương nên $m\in\left\{4;5;6;7;8;9\right\}$
Tức là có 6 giá trị $m$ thỏa mãn.
Cô ơi, nhưng đáp án lại là 8 giá trị cô ạ, em đăng lên đây để hỏi cách làm ạ