K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2014

co 2 cap (x;y) thoa man la (0;0);(2;2)

20 tháng 6 2018

bạn có thể làm chi tiết được k

26 tháng 2 2017

dap an la a.2

26 tháng 7 2017

3xy+x-y=1 
<=> 3xy+x=y+1 
<=> x(3y+1)=y+1; 
Nếu x=0 =>y=-1. 
Nếu x≠0 
Do: x(3y+1)=y+1; 
=> y+1 ⋮ 3y+1. 
=> 3y+3 ⋮ 3y+1. 
=> (3y+1)+2 ⋮ 3y+1 
=> 2 ⋮ 3y+1 
=> 3y+1 có thể có các giá trị: -2, -1; 1; 2. 
3y+1=-2 => y=-1; => x=0 (loại). 
3y+1=-1 => y=-2/3 (loại). 
3y+1= 1 => y= 0; => x=1 (nhận). 
3y+1= 2 => y= 1/3 (loại). 
Vậy pt chỉ có 2 cặp nghiệm nguyên: (x=0; y=-1) và (x=1; y=0).

3xy+x-y=1 
<=> 3xy+x=y+1 
<=> x(3y+1)=y+1; 
Nếu x=0 =>y=-1. 
Nếu x≠0 
Do: x(3y+1)=y+1; 
=> y+1 ⋮ 3y+1. 
=> 3y+3 ⋮ 3y+1. 
=> (3y+1)+2 ⋮ 3y+1 
=> 2 ⋮ 3y+1 
=> 3y+1 có thể có các giá trị: -2, -1; 1; 2. 
3y+1=-2 => y=-1; => x=0 (loại). 
3y+1=-1 => y=-2/3 (loại). 
3y+1= 1 => y= 0; => x=1 (nhận). 
3y+1= 2 => y= 1/3 (loại). 
Vậy pt chỉ có 2 cặp nghiệm nguyên: (x=0; y=-1) và (x=1; y=0).

NM
17 tháng 9 2021

ta có :

x,y nguyên thì \(\left|xy\right|\text{ và }\left|x-y\right|\text{ là các số nguyên không âm nên }\orbr{\begin{cases}xy=0\\x-y=0\end{cases}}\)

với \(xy=0\Rightarrow\orbr{\begin{cases}x=0\Rightarrow y=\pm1\\y=0\Rightarrow x=\pm1\end{cases}}\)

với \(x-y=0\Rightarrow x=y=\pm1\)

vậy có 6 cập x,y nguyên thỏa mãn là (0,1) ,(0,-1), (1,0), (-1,0) ,(1,1), (-1,-1)

1)

Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)

Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)

+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)

+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)

+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)

Vậy GTNN của \(C=-6\) khi \(x=\pm2\)

2) 

Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)

Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)

Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)

5 tháng 1 2020

Ví dụ một bài toán : 

Tìm GTLN của B = 10-4 | x-2| 

Vì |x-2| \(\ge0\forall x\)

\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0