Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.ababab=ab.10101⋮3\)
\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)
\(a.42k+14\)
\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)
\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)
Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z)
Gọi a:7=q+k(K là số dư q là thương)
Gọi b:7=p+k(p là thương, k là số dư)
=> a:7‐b:7=(q ‐ p )=>(a‐b):7 = q ‐‐ p
=>a‐b = (q ‐ p) x7
Có (q ‐ p)x 7chia hết cho 7 => a‐b chia hết cho 7
a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3
b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
K MINH NHA!...............
1) Chữ số tự nhiên có 4 chữ số có:
9999-1000+1=9000( số)
A) Chữ số chia hết cho 5 nhưng không chia hết cho 2 có chữ số tận cùng là 5
Chữ số tự nhiên có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2 có:
(9995-1005):10+1=900(số)
B)Chữ số chia hết cho 2 vá 5 có chữ số tận cùng là 0
Chữ số tự nhiên có 4 chữ số chia hết cho 2 và 5 có :
(9990-1000):10+1=900(số)
C)Chữ số chia cho 5 dư 3 có chữ số tận cùng là 3 và 8
Chữ số tự nhiên có 4 chữ số chia cho 5 dư 3 có:
(9998-1003):5+1=1800(số)
Đáp số :1) 9000 số
A) 900 số
B) 900 số
C) 1800 số
Gọi 4 số lẻ liên tiếp là 2k+1, 2k+3, 2k+5, 2k+7 ( k thuộc tập số nguyên)
Ta có: 2k+1+2k+3+2k+5+2k+7=8k+16
=8(k+2) chia hết cho 8 vì 8 chia hết cho 8 => đpcm
Gọi 4 số chẵn liên tiếp là 2k, 2k+2, 2k+4, 2k+6
Ta có: 2k+2k+2+2k+4+2k+6=8k+12 không chia hết cho 8 vì 12 không chia hết cho 8 => đpcm
Vì 8k chi hết cho 8 ( do 8 chia hết cho 8) nên 12 chia 8 dư bao nhiêu thì tổng chia 8 dư bấy nhiêu
Ta có 12 chia 8 dư 4 nên tổng 4 số chẵn liên tiếp cũng sẽ chia 8 dư 4.
ta có : aaaaaa = a.111111
= (a.15873.7) chia hết cho 7
= ĐPCM
ta co aaaaaa = a . 111111
vi 111111 chia het cho 7 nen a.111111 chia het cho 7 hay aaaaaa chia het cho 7
vậy aaaaaa chia hết cho 7