Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi hai số cần tìm là a;a+1
Theo đề, ta có:
\(\left(a+1\right)^2-a^2=2013\)
=>2a+1=2013
=>2a=2012
hay a=1006
Vậy: hai số cần tìm là 1006 và 1007
Ta có:
( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n
= 2m2 + mn + 4mn + 2n2
= 2 ( m2 + n2 ) + 5mn
Vì m2 + n2 chia hết cho 5 => 2 ( m2 + n2 ) chia hết cho 5 và 5mn chia hết cho 5
=> 2 ( m2 + n2 ) + 5mn chia hết cho 5
=> (2m + n ) ( m + 2n ) chia hết cho 5
=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.
Bài làm:
Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau
=> n sẽ không chia hết cho 2 hoặc 5
=> n là số lẻ
Đặt n = 2k+1 (k là số tự nhiên)
=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)
Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)
= 2k(2k+2)(4k2+4k+2)
= 8k(k+1)(2k2+2k+1) chia hết cho 8
=> n4-1 chia hết cho 8 (1)
Ta lại đặt n = 5k+1 (k lẻ)
=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)
= 5k(5k+2)(25k2+10k+1) chia hết cho 5
=> n4-1 chia hết cho 5 (2)
Từ (1) và (2) => \(n^4-1⋮8.5=40\)
Vậy \(n^4-1⋮40\)
Mk k chắc bài mk làm đúng nhé!