K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2022

a.

Chọn 1 nam từ 9 nam có 9 cách

Chọn 1 nữ từ 3 nữ có 3 cách

\(\Rightarrow\) Có \(9.3=27\) cách chọn nhóm 1 nam 1 nữ

b.

Chọn 2 nhà toán học từ 8 nahf toán học: \(C_8^2\) cách

Chọn 2 nhà vật lý từ 4 nhà vật lý: \(C_4^2\) cách

\(\Rightarrow C_8^2.C_4^2\) cách lập

c.

Các trường hợp thỏa mãn: (1 nhà toán học nữ, 2 nhà vật lý nam), (1 nhà toán học nữ, 1 nhà toán học nam, 1 nhà vật lý nam), (2 nhà toán học nữ, 1 nhà vật lý nam)

\(\Rightarrow C_3^1.C_4^2+C_3^1.C_5^1.C_4^1+C_3^2.C_4^1\) cách

20 tháng 7 2017

Đáp án B

Th1 : Số cách chọn ra 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam : 5.3.4 = 60

Th2 : Số cách chọn ra 2 nhà toán học nữ, 1 nhà vật lý nam :  C 3 2 . C 4 1 = 12

Th3 : Số cách chọn ra 1 nhà toán học nữ, 2 nhà vật lý nam :  C 3 1 C 4 2 = 18

Vậy có số cách chọn là : 90.

11 tháng 5 2017

Đáp án A.  

* Hướng dẫn giải:

+ Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam 

   Số các để chọn: oMVyCy57kKOe.png cách

+ Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý

   Số cách chọn: QotxmsMmuwND.pngcách

+ Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý

   Số cách chọn: Pzc0lZEDaH3V.pngcách

Vậy số cách lập là: 210 cách

14 tháng 6 2019

Ta có các khả năng sau

 Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam

Số cách chọn:  cách

 Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý

Số cách chọn:  cách

 Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý

Số cách chọn:  cách

Vậy số cách lập là: 210 cách.

Chọn A.

30 tháng 5 2019

Ta có các khả năng sau

- Đoàn công tác gồm: 1 nhà toán học nữ, 1 nhà vật lý và 1 nhà toán học nam

Số cách chọn: C 7 1 . C 4 1 . C 5 1 = 140  cách

- Đoàn công tác gồm: 1 nhà toán học nữ, 2 nhà vật lý

Số cách chọn: C 4 1 . C 5 2 = 40  cách

- Đoàn công tác gồm: 2 nhà toán học nữ, 1 nhà vật lý

Số cách chọn: C 4 2 . C 5 1 = 30  cách

Vậy số cách lập là: 140 + 40 + 30 = 210  cách.

Chọn đáp án A.

8 tháng 5 2023

Giúp m với

NV
8 tháng 5 2023

Ủa em coi lại đề, sao cộng hết học sinh 6 tổ được có 36 vậy? Còn 3 bạn nữa đi đâu rồi?

 

22 tháng 7 2019

Đáp án B.

Số cách chọn 5 em học sinh từ 8 học sinh trên là Piolyf5rhOyJ.pngcách

- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau

+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có o1oifwZb9VIQ.pngcách

+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có SgWZQ31JqDHD.pngcách

+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có 4ym1QJo6EGo9.pngcách

+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có hTymGnNoQmH9.pngcách

- Số cách chọn 5 em thỏa mãn bài ra là:

ornUidD4BtVp.pngcách

Vậy xác suất cần tính là: mqepdKQ62mFx.png

25 tháng 5 2018

Chọn B.

Số phần tử của không gian mẫu:

dtpOhTy0tR1A.png

Gọi A là biến cố “nhóm được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam

⇒ số phần tử của biến cố A là: WNEsRcnv4mvG.png

SJ4q751xOpf8.png.

30 tháng 10 2020

TH1. Tổ công tác gồm 2 nam và 3 nữ có số cách chọn \(C^2_{12}.C^3_{18}\)

TH2. Tổ công tác gồm 1 nam và 4 nữ có số cách chọn \(C^1_{12}.C^4_{18}\)

TH3. Tổ công tác chỉ gồm 5 nữ có số cách chọn \(C^5_{18}\)

Tổng số cách là: \(C^2_{12}.C^3_{18}\)\(C^1_{12}.C^4_{18}\)\(C^5_{18}\)= bấm máy nhé