Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
2)\(A=\frac{6x-5}{3x+1}=\frac{6x+2-7}{3x+1}=\frac{2\left(3x+1\right)-7}{3x+1}=2-\frac{7}{3x+1}\)
Do đó, để A nhận giá trị nguyên thì 7 chia hết cho 3x+1 hay (3x+1)EƯ(7)={1;-1;7;-7}
=>3xE{0;-2;6;-8}
=>xE{0;2}
*)Nếu x=0 thì A=2-\(\frac{7}{3\cdot0+1}=2-7=-5\)
*)Nếu x=2 thì A=2-\(\frac{7}{3\cdot2+1}=2-1=1\)
=>Để A có GTNN thì x=0
Vậy để A nhận giá trị nguyên thì xE{0;2}
Để A có GTNN là -5 thì x=0
thêm x2 + y2 + z2 = 1 nha
HT nha vinh