11. NGƯỜI THÔNG MINH NHẤTNgười ta tiến hành chọn người thông minh nhất trong ba học sinh đạt giải ở một cuộc thi học sinh giỏi toán bằng cách sau:Đem đến 5 chiếc mũ: 3 mũ trắng, 2 mũ đen. Bịt mắt cả ba học sinh và đội lên đầu mỗi người một mũ. Hai mũ còn lại đem cất đi.Khi bỏ băng bịt mắt người ta tuyên bố: “Người đầu tiên nói được mình đội mũ gì là người thông minh...
Đọc tiếp
11. NGƯỜI THÔNG MINH NHẤT
Người ta tiến hành chọn người thông minh nhất trong ba học sinh đạt giải ở một cuộc thi học sinh giỏi toán bằng cách sau:
Đem đến 5 chiếc mũ: 3 mũ trắng, 2 mũ đen. Bịt mắt cả ba học sinh và đội lên đầu mỗi người một mũ. Hai mũ còn lại đem cất đi.
Khi bỏ băng bịt mắt người ta tuyên bố: “Người đầu tiên nói được mình đội mũ gì là người thông minh nhất”. Ba học sinh im lặng quan sát lẫn nhau, lát sau, một học sinh nói được anh ta đội mũ màu trắng và anh ta thắng cuộc.
Vậy anh ta đã suy luận thế nào để xác định được màu mũ trên đầu anh ta?
12. THỬ TÀI ĐOÁN MŨ
Ba bạn An, Minh, Tuấn ngồi theo hàng dọc: Tuấn trên cùng và An dưới cùng. Tuấn và Minh không được nhìn lại phía sau. Lấy ra 2 mũ trắng, 3 mũ đen và đội lên đầu mỗi người một mũ, 2 mũ còn lại đem cất đi (2 mũ này ba bạn không nhìn thấy).
Khi được hỏi màu mũ trên đầu mình, An nói không biết, Minh cũng xin chịu. Dựa vào biểu hiện của An và Minh liệu Tuấn có thể xác định được màu mũ trên đầu mình hay không?
13. CHỌN HOÀNG THÁI TỬ
Có một ông vua đã già nhưng không có người kế thừa. Thấy mình không còn sống được bao lâu nữa, ông bắt đầu chọn Hoàng Thái Tử có năng lực.
Một hôm, có bốn chàng trai tài giỏi nhất Vương quốc đến ra mắt đức vua. Nhà vua tiến hành lựa chọn như sau:
Khi đã bịt mắt bốn chàng trai và để ngồi trên một ghế tròn, nhà vua nói: “Ta sẽ đặt lên đầu mỗi người một mũ miện vàng hoặc bạc. Khi bỏ khăn bịt mắt cho các người, ai nhìn thấy số mũ miện vàng nhiều hơn hãy đứng lên và đứng đó cho tới khi có người nói được trên đầu mình mũ miện gì. Ai nói được sẽ là người thừa kế của ta”.
Khăn bịt mắt được bỏ ra, các chàng trai nhìn nhau và đều đứng lên. Sau hồi lâu, một người kêu lên:
- Thưa Đế vương, trên đầu con là mũ miện vàng.
Anh ta đã suy đoán đúng.
Vậy nhà vua đã đặt những mũ miện gì lên đầu các chàng trai và chàng trai thông minh đó đã suy luận thế nào để biết được mũ miện trên đầu mình?
14. CHUYỆN LY KỲ TRÊN TÀU HỎA
Tàu hỏa chạy qua một đường ngầm, khói bay vào toa làm một số hành khách bị nhọ mặt. Vì trong toa không có gương và trong suốt cuộc hành trình hành khách không nói chuyện với nhau nên không ai biết mặt mình có bị nhọ hay không.
Người kiểm vé đi qua thấy vậy nói: “Rất tiếc, một số hành khách trong toa đã bị nhọ mặt. Chỉ những hành khách bị nhọ mới được rửa mặt và phải rửa vào lúc tàu dừng ở các ga”.
Sau lần đỗ thứ tư thì trên toa mới không còn hành khách bị nhỏ (sau lần đỗ thứ ba vẫn còn). Hỏi trong toa có bao nhiêu người bị nhọ và những người bị nhọ đã suy luận thế nào để biết được mình bị nhọ?
Hãy giải bài toán với những điều kiện sau:
a) Hành khách chỉ đi rửa khi biết chắc chắn mình bị nhọ và đi rửa ngay sau khi tàu dừng.
b) Khi tàu dừng, ở chỗ rửa bao nhiêu người rửa cũng được.
c) Từ quan sát, nói chung các hành khách đều biết suy đoán đúng.
15. NGƯỜI QUEN TRONG HỘI NGHỊ
Trong hội nghị mỗi người có một số người quen nhất định, người A quen người B thì người B cũng quen A.
Hãy chứng minh rằng số người có số lẻ người quen là một số chẵn.
16. NHÓM 6 NGƯỜI
Hãy chứng tỏ rằng trong một nhóm 6 người bất kỳ luôn luôn có: hoặc 3 người quen nhau từng đôi một, hoặc 3 người không quen nhau từng đôi (mỗi người đều không quen cả 2 người kia).
17. CHỈ CÓ MỘT NGƯỜI QUEN
Trong hội nghị học sinh giỏi toán toàn quốc người ta nhận thấy điều lý thú sau đây:
Trong hội nghị có rất nhiều người quen biết nhau, nhưng nếu hai người nào đó có cùng số người quen thì không có chung một người quen nào cả.
Bạn hãy chứng tỏ rằng trong hội nghị này có ít ra một đại biểu chỉ có duy nhất một người quen.
18. THÔNG BÁO CỦA THƯ VIỆN
Một thư viện mở thông tầm, có nhiều bạn đọc, mỗi người chỉ đến một lần trong ngày. Bất kỳ ba người nào đến thư viện cùng ngày cũng có hai người gặp nhau trong thư viện.
Người phụ trách thư viện muốn chọn hai thời điểm trong ngày để truyền đạt một thông báo trực tiếp tới tất cả bạn đọc đã đến thư viện trong ngày đó. Liệu có thể chọn được không?
Bạn hãy giúp người phụ trách thư viện giải quyết vấn đề trên.
19. THI ĐẤU BÓNG BÀN
Ở một cuộc thi đấu bóng bàn mỗi vận động viên đều phải đấu với tất cả các vận động viên khác, và mỗi cặp đấu đều phân định người thắng, người thua.
Bạn hãy chứng tỏ rằng có một vận động viên khi nhắc đến tên các vận động viên thua mình và tên các vận động viên thua các vận động viên thua mình thì bao gồm tất cả các vận động viên khác.
20. XĂNG VÀ DẦU
Có một can xăng và một can dầu. Lấy 1 kg từ can xăng rót vào can dầu, sau đó lại lấy 1kg dầu (đã trộn xăng) đổ vào can xăng. Làm như vậy ba lần.
Hỏi lượng xăng (trọng lượng) ở can dầu nhiều hơn hay lượng dầu ở can xăng nhiều hơn?
Đề bài cho có 10 người dự họp mà mỗi người lại quen với ít nhất 5 người khác. Khi đó ta lấy 2 người bất kì, chắc chắn có sẽ có ít nhất là 2 người quen chung.
Thật vậy, ngoài hai người đó buổi họp còn 8 người, mà nếu như hai người đó không có người quen chung hoặc chỉ có một người quen chung thì số người còn lại lại lớn hơn 8 (vô lý)
Vậy hai người bất kì sẽ có ít nhất là 2 người quen chung.
Vậy ta có cách xếp như sau:
Đầu tiên ta chọn người A và người B bất kì xếp vào hai ghế đối diện nhau.
Sau đó, ta lấy 2 trong số các người quen chung của A và B xếp vào hai ghế còn lại.
Vậy thì ta được bàn tròn có 4 chỗ ngồi, và người nào cũng ngồi giữa hai người quen của mình.
Bài giải :
Đề bài cho có 10 người dự họp mà mỗi người lại quen với ít nhất 5 người khác. Khi đó ta lấy 2 người bất kì, chắc chắn có sẽ có ít nhất là 2 người quen chung.
Thật vậy, ngoài hai người đó buổi họp còn 8 người, mà nếu như hai người đó không có người quen chung hoặc chỉ có một người quen chung thì số người còn lại lại lớn hơn 8 (vô lý)
Vậy hai người bất kì sẽ có ít nhất là 2 người quen chung.
Vậy ta có cách xếp như sau:
Đầu tiên ta chọn người A và người B bất kì xếp vào hai ghế đối diện nhau.
Sau đó, ta lấy 2 trong số các người quen chung của A và B xếp vào hai ghế còn lại.
Vậy thì ta được bàn tròn có 4 chỗ ngồi, và người nào cũng ngồi giữa hai người quen của mình