K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n\left(55-1\right)\)

\(=55^n.54\)

\(54⋮54\Rightarrow55^n.54⋮54\)

Hay \(55^{n+1}-55^n⋮54\)

8 tháng 10 2017

Ta có: 55n + 1 - 55n

= 55n . 55 - 55n

= 55n(55 - 1)

= 55n . 54 \(⋮\) 54

Vậy: 55n + 1 - 55n \(⋮\) 54.

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

20 tháng 8 2018

Ta có :\(55^{n+1}-55=55.55^n-55=55\left(55^n-1\right)=55\left(55^n-1^n\right)=55.\left(55-1\right)^n=55.54^n⋮54\)

\(\Rightarrow55^{n+1}-55⋮54\) (điều phải chứng minh)

6 tháng 10 2020

Ta có :

55n+1 - 55 = 55.55n - 55 = 55 (55n - 1) = 55.(55n - 1n) = 55.(55-1)n

= 55.54n \(⋮\) 54

\(\Rightarrow\) 55n+1 - 55\(⋮\)54 (ĐPCM).

CHÚC BẠN HỌC TỐT ok

19 tháng 8 2018

\(55^{n+1}-55^n=55^n.55^1-55^n=55^n.55-55^n=55^n.\left(55-1\right)\)

\(=55^n.54\left(đpcm\right)\)

\(55^n.54\)chia hết cho 54

à bạn coi cái đề lại giùm mk nha hình như là \(\left(55^{n+1}-55^n\right)\)

14 tháng 8 2016

\(55^{n+1}-55^n\)

\(=55^n.55-55^n.1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì có 54 trong tích 

=> 55n . 54 chia hết cho 54

=> Điều phải chứng minh

14 tháng 8 2016

55n+1−55= 55n.55−55= 55n(55−1)=(55n.54)⋮54

- Vậy (55n+1−55n)⋮54

24 tháng 9 2018

Bạn dùng phương pháp đặt nhân tử chung của lớp 8 nhé 

\(55^n+1-55^n=55^n.55-55^n\) (vì \(55^n+1=55^n.55^1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì xuất hiện trong tích có thừa số 54 nên chia hết cho 54.

24 tháng 9 2018

Ta có : 

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

Vậy \(55^{n+1}-55^n⋮54\) với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

3 tháng 6 2016

Ta có: 

55n+1-55n=55n(55-1)=55n.54 chia hết cho 54

Vậy 55n+1-55n chia hết cho 54 (đpcm)

3 tháng 6 2016

\(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)chia hết cho 54 với mọi n là số tự nhiên.

23 tháng 9 2015

câu hỏi tương tự nha bạn.

23 tháng 9 2015

55n+1-55n  chia hết cho 54 
= 55n.(551-1)
= 55n.54  chia hết cho 54
=>  55^n+1 -55^n chia hết cho 54 ( với mọi n thuộc N)

20 tháng 4 2017

Bài giải:

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

2 tháng 8 2017

55n + 1 – 55n chia hết cho 54 (n ∈ N)

Ta có 55n + 1 – 55n = 55n . 55 - 55n

= 55n (55 - 1)

= 55n . 54

Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.

Vậy 55n + 1 – 55n chia hết cho 54.

8 tháng 10 2018

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=54.55^n=>chiahetcho54\)

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

k mk nha

cảm ơn