\(m^{2n}-1\)chia hết cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.

Xét n = 1 thì ta có:

\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)

Giả sử nó đúng tới n = k

\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)

\(\Rightarrow m^{2^k}=ay+1\)

Ta chứng minh nó đúng với n = k + 1

Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)

\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)

Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)

Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)

\(\Rightarrow\)Nó đúng với n = k + 1.

Vậy theo quy nạp ta có điều phải chứng minh.

16 tháng 1 2017

Tạm cho k=3

17 tháng 1 2017

tớ thì nghĩ k=6

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp

Mà 3 số chẵn liên tiếp luôn \(⋮48\)

\(\Rightarrowđpcm\)

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\times\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\times\left(n^2-1\right)\)

\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)

Vì n là số lẻ nên \(n⋮̸2\)

\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)

\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)

\(\Rightarrow n^3+3n^2-n-3⋮48\)

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

29 tháng 8 2019

Cầ gấp, cần gấp. Cao nhân nào đi qua xin chỉ giáo dùm

17 tháng 4 2020

Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình. 
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\ \)

Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)

Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))

Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)

\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)

Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))

Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)

Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)

Từ (1), (2) và (3) => ĐPCM

Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

NV
30 tháng 12 2018

1/

\(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n\left(n^2+3n+2\right)+2010n^2\)

\(=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

Lại có \(2010⋮6\Rightarrow2010n^2⋮6\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) (đpcm)

2/ Giả sử A là số chính phương, đặt \(A=k^2\) với \(k\in N\)

\(\Rightarrow n^2+10n+136=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\)

\(\Leftrightarrow\left(n+5\right)^2-k^2=-111\Leftrightarrow\left(n+k+5\right)\left(n-k+5\right)=-111\)

Do \(n+k+5\ge5\) nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}n+k+5=37\\n-k+5=-3\end{matrix}\right.\) \(\Rightarrow n=12\)

TH2: \(\left\{{}\begin{matrix}n+k+5=111\\n-k+5=-1\end{matrix}\right.\) \(\Rightarrow n=50\)

Vậy \(n=\left\{12;50\right\}\)

30 tháng 12 2018

1.

Ta có \(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n^3+n^2+2n^2+2n+2010n^2=n^2\left(n+1\right)+2n\left(n+1\right)+2010n^2=\left(n+1\right)\left(n^2+2n\right)+2010n^2=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Ta lại có \(n\left(n+1\right)\left(n+2\right)\) là 3 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(1\right)\)

\(2010⋮6\Leftrightarrow2010n^2⋮6\left(2\right)\)

Từ (1),(2)\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) hay \(n^3+2013n^2+2n⋮6\)

2.

Đặt \(n^2+10n+136=k^2\left(k\in N\right)\Leftrightarrow n^2+2.n.5+25+111=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\Leftrightarrow111=k^2-\left(n+5\right)^2\Leftrightarrow\left(k+n+5\right)\left(k-n-5\right)=111\)(*)

Vì 111 là số nguyên tố và k+n+5>k-n-5

Vậy (*)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n+5=111\\k-n-5=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n=106\\k-n=6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k=56\\n=50\end{matrix}\right.\)

Vậy n=50 thì n2+10n+136 là số chính phương